Intermediate filaments (IFs) compose, together with actin filaments and microtubules, the cytoskeleton and they exhibit a remarkable but still enigmatic cell-type specificity. In a number of cell types, IFs seem to be instrumental in the maintenance of the mechanical integrity of cells and tissues. The function of IFs in astrocytes has so far remained elusive. We have recently reported that glial scar formation following brain or spinal cord injury is impaired in mice deficient in glial fibrillary acidic protein and vimentin. These mice lack IFs in reactive astrocytes that are normally pivotal in the wound repair process. Here we show that reactive astrocytes devoid of IFs exhibit clear morphological changes and profound defects in cell motility thereby revealing a novel function for IFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1471-4159.2001.00595.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!