The interaction of insulin with metformin on muscle glucose metabolism was examined in the perfused rat hindquarter. Glucose, lactate, and insulin were measured at the inflow to and outflow from the hindquarter, which was perfused with human erythrocytes suspended in a Kreb's-Ringer albumin buffer for 120 min. Perfusions were performed with no additions (I) and with insulin infusions targeted to concentrations of 175 (II) and 350 pmol/l (III) as well as infusions targeted to levels of 0 (IV), 70 (V), and 175 pmol/l (VI) but in the presence of metformin (90 microg/ml). In the presence of metformin, identical infusion rates of insulin yielded higher insulin concentrations, namely 283 +/- 19 vs. 202 +/- 31 pmol/l for VI and II, respectively (P < 0.05). Glucose uptake (GU) increased correspondingly to 79.8 +/- 0.8 in VI from 60.8 +/- 2.1 for IV and 50.1 +/- 1.3 for II and 46.1 +/- 2.7 mg/120 min for I (P < 0.05). This enhanced GU was matched by increasing insulin levels using only a higher rate of its infusion (III): GU of 70.2 +/- 2.4 mg/120 min with insulin of 334 +/- 26 pmol/l (P > 0.05). The simple concurrent presence of metformin and insulin [matching insulin concentrations in II rather than infusion rates (IV)] demonstrated no additonal effect on GU above that of metformin. The synergistic effects of metformin and insulin could thus be explained by a metformin-mediated decrease in the extraction of insulin by the hindquarter (4.8 +/- 0.4% vs. 8.6 +/- 0.9%, P < 0.05). This increases interstitial insulin (and, in a closed system, perfusate insulin), which acts on cell surface receptors to increase glucose uptake. The results demonstrate that the extracellular insulin concentration, rather than insulin internalization and degradation, is the primary determinant of insulin action on GU in muscle and that changes in tissue insulin extraction may alter local concentrations and, therefore, systemic insulin sensitivity. This provides both a physiological mechanism and a possible therapeutic target for improving insulin sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.2001.281.6.E1240 | DOI Listing |
Cardiovasc Diabetol
January 2025
State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Among hypertensive cohorts across different nations, the relationship between the triglyceride-glucose index (TyG) and its conjunction with obesity metrics in relation to cardiovascular disease (CVD) incidence and mortality remains to be elucidated.
Methods: This study enrolled 9,283, 164,357, and 5,334 hypertensives from the National Health and Nutrition Examination Survey (NHANES), UK Biobank (UKBB), and Shanghai Pudong cohort. The related outcomes for CVD were defined by multivariate Cox proportional hazards models, Generalized Additive Models and Mendelian randomization analysis.
Cardiovasc Diabetol
January 2025
State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Rd, Xicheng District, Beijing, 100037, People's Republic of China.
Background: Remnant cholesterol (remnant-C) contributes to atherosclerotic cardiovascular disease (ASCVD), particularly in individuals with impaired glucose metabolism. Patients with impaired glucose metabolism and ASCVD remain at significant residual risk after coronary artery bypass grafting (CABG). However, the role of remnant-C in this population has not yet been investigated.
View Article and Find Full Text PDFBMC Endocr Disord
January 2025
School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Kanagawa, Japan.
Insulin receptor substrate (IRS)-1 and IRS-2 are major molecules that transduce signals from insulin and insulin-like growth factor-I receptors. The physiological functions of these proteins have been intensively investigated in mice, while little is known in other animals. Our previous study showed that the disruption of IRS-2 impairs body growth but not glucose tolerance or insulin sensitivity in rats, which led us to hypothesize that IRS-1 plays more pivotal roles in insulin functions than IRS-2.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
Background: Type 2 Diabetes Mellitus (T2DM) is closely associated with the development of vascular damage in the heart. In this study, the researchers aimed to determine whether Aerobic Training (AT) and Vitamin D supplementation (Vit D) could alleviate heart complications and vascular damage caused by diabetes. The effects of an eight-week AT program and Vit D on the expression of miR-1, IGF-1 genes, and VEGF-B in the cardiomyocytes of rats with T2DM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!