Architecture of the protein-conducting channel associated with the translating 80S ribosome.

Cell

Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

Published: November 2001

In vitro assembled yeast ribosome-nascent chain complexes (RNCs) containing a signal sequence in the nascent chain were immunopurified and reconstituted with the purified protein-conducting channel (PCC) of yeast endoplasmic reticulum, the Sec61 complex. A cryo-EM reconstruction of the RNC-Sec61 complex at 15.4 A resolution shows a tRNA in the P site. Distinct rRNA elements and proteins of the large ribosomal subunit form four connections with the PCC across a gap of about 10-20 A. Binding of the PCC influences the position of the highly dynamic rRNA expansion segment 27. The RNC-bound Sec61 complex has a compact appearance and was estimated to be a trimer. We propose a binary model of cotranslational translocation entailing only two basic functional states of the translating ribosome-channel complex.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(01)00541-4DOI Listing

Publication Analysis

Top Keywords

protein-conducting channel
8
sec61 complex
8
architecture protein-conducting
4
channel associated
4
associated translating
4
translating 80s
4
80s ribosome
4
ribosome vitro
4
vitro assembled
4
assembled yeast
4

Similar Publications

Analysis and prediction of internal mitochondrial targeting signals.

Methods Enzymol

October 2024

Computational Systems Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany. Electronic address:

Mitochondria consist of several hundreds of proteins, the vast majority of which are synthesized in the cytosol as precursor proteins from where they are targeted to and imported into mitochondria. The transport of proteins into mitochondria relies on specific targeting information encoded within the protein sequence, known as mitochondrial targeting sequences (MTSs). These N-terminal extensions are usually between 8 and 80 residues long and form amphipathic helices with one hydrophobic and one positively charged surface.

View Article and Find Full Text PDF

Role of Sec61α2 Translocon in Insulin Biosynthesis.

Diabetes

December 2024

Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI.

Translocational regulation of proinsulin biosynthesis in pancreatic β-cells is unknown, although several studies have reported an important accessory role for the Translocon-Associated Protein complex to assist preproinsulin delivery into the endoplasmic reticulum via the heterotrimeric Sec61 translocon (comprising α, β, and γ subunits). The actual protein-conducting channel is the α-subunit encoded either by Sec61A1 or its paralog Sec61A2. Although the underlying channel selectivity for preproinsulin translocation is unknown, almost all studies of Sec61α to date have focused on Sec61α1.

View Article and Find Full Text PDF

Tracking the Activity and Position of Mitochondrial β-Barrel Proteins.

Methods Mol Biol

March 2024

Biophysics Department, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.

Total interference reflection fluorescence (TIRF) microscopy of lipid bilayers is an effective technique for studying the lateral movement and ion channel activity of single integral membrane proteins. Here we describe how to integrate the mitochondrial outer membrane preprotein translocase TOM-CC and its β-barrel protein-conducting channel Tom40 into supported lipid bilayers to identify possible relationships between movement and channel activity. We propose that our approach can be readily applied to membrane protein channels where transient tethering to either membrane-proximal or intramembrane structures is accompanied by a change in channel permeation.

View Article and Find Full Text PDF

Protein translocation across the endoplasmic reticulum (ER) membrane is an essential step during protein entry into the secretory pathway. The conserved Sec61 protein-conducting channel facilitates polypeptide translocation and coordinates cotranslational polypeptide-processing events. In cells, the majority of Sec61 is stably associated with a heterotetrameric membrane protein complex, the translocon-associated protein complex (TRAP), yet the mechanism by which TRAP assists in polypeptide translocation remains unknown.

View Article and Find Full Text PDF

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!