Triethylborane-induced bromine atom-transfer radical addition in aqueous media: study of the solvent effect on radical addition reactions.

J Org Chem

Division of Molecular Engineering, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.

Published: November 2001

A mixture of ethyl bromoacetate and 1-octene was treated with triethylborane in water at ambient temperature to provide ethyl 4-bromodecanoate in good yield. The bromine atom-transfer radical addition in benzene was not satisfactory. The addition proceeded smoothly in polar solvents such as DMF and DMSO, protic solvents such as 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol, and aqueous media. Ab initio calculations were conducted to reveal the origin of the solvent effect of water in the addition reaction. The polar effect of solvents, which is judged by the dielectric constant, on the transition states in the bromine atom-transfer and radical addition steps is moderately important. Calculations show that a polar solvent tends to lower the relative energies of the transition states. The coordination of a carbonyl group to a proton in a protic solvent, like a Lewis acid, would also increase the efficiency of the propagation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo010652lDOI Listing

Publication Analysis

Top Keywords

radical addition
16
bromine atom-transfer
12
atom-transfer radical
12
aqueous media
8
polar solvents
8
transition states
8
addition
6
triethylborane-induced bromine
4
radical
4
addition aqueous
4

Similar Publications

Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits.

View Article and Find Full Text PDF

The antioxidant extracts considered a very important food additive which promoting the protection of lipid and prolong the shelf life of food products. The aim of this investigation was decrease the time of extraction of hibiscus leaves extract (HLE) and olive leaves extract (OLE) from 48 h to only 6 h without reducing efficiency of these extracts. HPLC assay, scavenging radical activity by DPPH˙ (IC), inhibition lipid peroxidation by both β-Carotene/Linoleic Acid Bleaching (βCB) and Thiobarbituric Acid Reactive Substances (TBARs) assays, antibacterial and antifungal activities measured for different concentrations of ethanolic extracts by conventional extraction (CE) and difference in pressure extraction (DPE) methods, and the results shown a considerable in mean difference ( < 0.

View Article and Find Full Text PDF

One-component anti-aging agents.

Mater Horiz

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

Polymer photo-oxidation aging is a significant issue in plastics engineering, leading to reduced performance, shorter lifespan, and additional pollution. Anti-aging agents, including antioxidants and ultraviolet (UV)-shielding agents, are used to ameliorate the above problems. However, multi-component agents involve complex synthesis, mixed processing, and environmental concerns.

View Article and Find Full Text PDF

The substitution of an aromatic ring with a C(sp)-rich bicyclic hydrocarbon, known as bioisosteric replacement, plays a crucial role in modern drug discovery. Substituted bicyclo[1.1.

View Article and Find Full Text PDF

A novel Ru-catalyzed radical-triggered trifunctionalization of hexenenitriles is presented, employing a strategy of remote cyano group migration and -C(sp)-H functionalization. Through remote cyano migration, the alkenyl moiety undergoes difunctionalization to the formation of a benzylic radical intermediate. This intermediate facilitates -selective C-H bond addition relative to the C-Ru bond within the Ru(III) complex, ultimately enabling trifunctionalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!