Transcript quantification based on chemical labeling of RNA associated with fluorescent detection.

Anal Biochem

Centre de Bioingénierie Gilbert Durand, UMR 5504 INSA/CNRS and UMR 792 INSA/INRA, Institut National des Sciences Appliquées, 135 Avenue de Rangueil, Toulouse Cedex 4, 31077, France.

Published: November 2001

A general method for RNA measurement, based on chemical labeling of RNA with digoxigenin (without retrotranscription), has been established. Labeled RNA is hybridized with nylon membranes containing spot blots of PCR-amplified gene fragments and the fluorescence detection is mediated via specific anti-digoxigenin antibody coupled to alkaline phosphatase. The method was optimized in order to be quantitative, and high precision (less than 24% error) was obtained, allowing analysis of relatively small changes in gene expression. When the quantity of cellular RNA used in this method is maintained constant and the amount of RNA in the cell determined, the true intracellular transcript concentrations can be determined, rather than simple abundance of a messenger in RNA population. This RNA quantification technique was extended to macroarrays blotted automatically and the validity of the method was tested by comparison with expression data obtained by Northern blotting.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abio.2001.5390DOI Listing

Publication Analysis

Top Keywords

based chemical
8
chemical labeling
8
rna
8
labeling rna
8
transcript quantification
4
quantification based
4
rna associated
4
associated fluorescent
4
fluorescent detection
4
detection general
4

Similar Publications

Background: All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys).

View Article and Find Full Text PDF

PLAC8 attenuates pulmonary fibrosis and inhibits apoptosis of alveolar epithelial cells via facilitating autophagy.

Commun Biol

January 2025

Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

Idiopathic pulmonary fibrosis (IPF) is an irreversible lung condition that progresses over time, which ultimately results in respiratory failure and mortality. In this study, we found that PLAC8 was downregulated in the lungs of IPF patients based on GEO data, in bleomycin (BLM)-induced lungs of mice, and in primary murine alveolar epithelial type II (pmATII) cells and human lung epithelial cell A549 cells. Overexpression of PLAC8 facilitated autophagy and inhibited apoptosis of pmATII cells and A549 cells in vitro.

View Article and Find Full Text PDF

This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O.

View Article and Find Full Text PDF

The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA.

View Article and Find Full Text PDF

Lattice defect engineering advances n-type PbSe thermoelectrics.

Nat Commun

January 2025

School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.

Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!