Synthetic oligomers of the antigenic Candida albicans (1-->2)-beta-mannopyranans adopt a compact solution conformation that leads to numerous inter-residue nuclear Overhauser effects, including unprecedented nuclear Overhauser effects between n and n + 3 residues. In excellent agreement with experimentally determined distances, unrestrained molecular dynamics point to a single family of conformations that approximate a compact helical motif with a three-residue repeat for this unique homopolymer. When the synthetic di- to hexasaccharides were employed as inhibitors of monoclonal antibodies, which protect mice against a lethal dose of the yeast pathogen, a novel pattern of inhibitor activity was observed. Instead of the paradigm first reported by Kabat (Kabat, E. A. (1962) Fed. Proc. 21, 694-701; Kabat, E. A. (1966) J. Immunol. 97, 1-11), wherein homo-oligosaccharides exhibit increasing inhibitory activity with increasing size, here the maximum activity is reached for di- and trisaccharides and diminishes significantly for tetra-, penta-, and hexasaccharides. These immunochemical data correlate with the ordered conformation of the beta-1,2-linked mannopyranan and imply that a uniquely small antigenic determinant has potential as a component of synthetic conjugate vaccines against Candida albicans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M109274200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!