Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The behaviour of epitheliocytes, their transformed analogues, and fibroblasts was studied on special culture substrates--lattices with large square openings (the area of an opening was 2000 microm2). It was shown that normal epithelocytes and fibroblasts initially attached to and spread on the lattice bars, were soon displaced into the lattice openings and appeared to be "sagged" in the substrate-free spaces. The cells remained attached to the bars only by their edges (epitheliocytes) or lateral processes (fibroblasts), whereas basal surfaces of the cells had no contacts with the substrate. Displacement of the cells from the bars into the lattice openings was observed only if during spreading the cell body was located on two perpendicular bars. In this position the cell body underwent bending which presumably induced stretching of the cell and its displacement into the opening. Unlike epitheliocytes, which gradually "covered" the lattice openings completely, the fibroblasts were retracted and elongated upon their displacement, "crossing" the openings by their bodies and processes. The epitheliocytes transformed by the ras oncogene and displaying a fibroblast-like shape, most often remained on the bars and were not displaced into the lattice openings. Induction of the epithelioid phenotype in fibroblasts by the agents, depolymerizing (colcemid) or disintegrating (taxol) the cytoskeletal system of microtubuli, was accompanied by a change in the behaviour of the cells: the treated fibroblasts, like epitheliocytes, acquired the ability to "cover" the lattice openings. Possible mechanisms of the cell reactions to the substrate having discontinuous configuration are discussed. It is supposed that these distinctions in reactions of epitheliocytes and fibroblast-like cells may result from different bending ability of the cells and/or differences between forces responsible for the cell adhesion to the lattice bars and forces stretching the cells over the lattice openings.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!