Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein that participates in multiple DNA transactions that include replication and repair. Base excision repair is a central DNA repair pathway, responsible for the removal of damaged bases. We have shown previously that RPA was able to stimulate long patch base excision repair reconstituted in vitro. Herein we show that human RPA stimulates the activity of the base excision repair component human DNA ligase I by approximately 15-fold. Other analyzed single-stranded binding proteins would not substitute, attesting to the specificity of the stimulation. Conversely, RPA was unable to stimulate the functionally homologous ATP-dependent ligase from T4 bacteriophage. Kinetic analyses suggest that catalysis of ligation is enhanced by RPA, as a 4-fold increase in k(cat) is observed, whereas K(m) is not significantly changed. Substrate competition experiments further support the conclusion that RPA does not alter the specificity or rate of substrate binding by DNA ligase I. Additionally, RPA is unable to significantly enhance ligation on substrates containing an unannealed 3'-upstream primer terminus, suggesting that RPA does not stabilize the nick site to enhance ligase recognition. Furthermore when DNA ligase I is pre-bound to the substrate and limited to a single turnover, RPA is still able to stimulate ligation. Overall, the results support a mechanism of stimulation that involves increasing the rate of catalysis of ligation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M109053200DOI Listing

Publication Analysis

Top Keywords

dna ligase
16
base excision
12
excision repair
12
rpa
9
replication protein
8
rpa stimulate
8
rpa unable
8
catalysis ligation
8
dna
6
ligase
6

Similar Publications

Nuclear Receptor Subfamily 4 Group A Member 3: A Potential Marker of Endometriosis.

Discov Med

December 2024

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, 610017 Chengdu, Sichuan, China.

Background: Nuclear receptor subfamily 4 group A member 3 () is lowly expressed in ectopic endometrium and can be degraded by ubiquitination in vascular endothelial cells. Murine double minute 2 () is predicted to be the ubiquitin ligase of . Hence, we investigated the effects of and on endometriosis and clarified corresponding regulatory mechanisms.

View Article and Find Full Text PDF

Ring finger protein 5 mediates STING degradation through ubiquitinating K135 and K155 in a teleost fish.

Front Immunol

December 2024

School of Marine Sciences, State Key Laboratory for Biocontrol/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering & Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China.

Stimulator of interferon genes (STING) is a key connector protein in interferon (IFN) signaling, crucial for IFN induction during the activation of antiviral innate immunity. In mammals, ring finger protein 5 (RNF5) functions as an E3 ubiquitin ligase, mediating STING regulation through K150 ubiquitylation to prevent excessive IFN production. However, the mechanisms underlying RNF5's regulation of STING in teleost fish remain unknown.

View Article and Find Full Text PDF

Association between migraine and mitochondria: A Mendelian randomization study.

Mol Pain

December 2024

Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, China.

Background And Objective: Mitochondria are important organelles functioning in metabolic processes, inflammatory response and neurological disorders. Migraines are chronic and paroxysmal neurological disorders characterized by recurrent episodes of severe headache and other neurological symptoms. We explored whether mitochondria may be genetically and/or causally associated with migraine.

View Article and Find Full Text PDF

DNA Ligase I Circularises Potato Spindle Tuber Viroid RNA in a Biomolecular Condensate.

Mol Plant Pathol

December 2024

Plant Molecular and Cell Biology Program, University of Florida, Gainesville, Florida, USA.

Viroids are single-stranded circular noncoding RNAs that mainly infect crops. Upon infection, nuclear-replicating viroids engage host DNA-dependent RNA polymerase II for RNA-templated transcription, which is facilitated by a host protein TFIIIA-7ZF. The sense-strand and minus-strand RNA intermediates are differentially localised to the nucleolus and nucleoplasm regions, respectively.

View Article and Find Full Text PDF

LIG4 syndrome is an exceptionally rare primary immune deficiency. It is an autosomal recessive genetic disease, falling within the spectrum of genetic disorders characterized by impaired DNA damage response mechanisms. Common clinical characteristics encompass microcephaly, growth retardation, developmental delays, facial deformities, variable immune deficiencies, pancytopenia, heightened susceptibility to malignant tumors, and significant clinical and cellular radiosensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!