Temporal differences in membrane loss lead to distinct reticulocyte features in hereditary spherocytosis and in immune hemolytic anemia.

Blood

Laboratoire d'hématologie, AP-HP, Faculté de Médecine Paris XI, INSERM U473, Hôpital de Bicêtre, Le Kremlin Bicêtre, France.

Published: November 2001

Spherocytic red cells with reduced membrane surface area are a feature of hereditary spherocytosis (HS) and some forms of autoimmune hemolytic anemia (AIHA). It is generally assumed that membrane loss in spherocytic red cells occurs during their sojourn in circulation. The structural basis for membrane loss in HS is improper assembly of membrane proteins, whereas in AIHA it is due to partial phagocytosis of circulating red cells by macrophages. A hypothesis was formed that these different mechanisms should lead to temporal differences in surface area loss during red cell genesis and during sojourn in circulation in these 2 spherocytic syndromes. It was proposed that cell surface loss could begin at the reticulocyte stage in HS, whereas surface area loss in AIHA involves only circulating mature red cells. The validity of this hypothesis was established by documenting differences in cellular features of reticulocytes in HS and AIHA. Using a novel technique to quantitate cell surface area, the decreased membrane surface area of both reticulocytes and mature red cells in HS compared with normal cells was documented. In contrast, in AIHA only mature red cells but not reticulocytes exhibited decreased membrane surface area. These data imply that surface area loss in HS, but not in AIHA, is already present at the circulating reticulocyte stage. These findings imply that loss of cell surface area is an early event during genesis of HS red cells and challenge the existing concepts that surface area loss in HS occurs predominantly during the sojourn of mature red cells in circulation.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.v98.10.2894DOI Listing

Publication Analysis

Top Keywords

surface area
36
red cells
32
area loss
16
mature red
16
membrane loss
12
membrane surface
12
cell surface
12
surface
10
loss
9
red
9

Similar Publications

Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.

View Article and Find Full Text PDF

Purpose: The fixation method commonly employed worldwide for treating unstable fractures of the posterior pelvic ring is the percutaneous iliosacral screw technique. However, prolonged operation time and frequent fluoroscopies result in surgical risks. This study aimed to investigate whether a new triangulation method could reduce operative and fluoroscopy times and increase the accuracy of screw placement.

View Article and Find Full Text PDF

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.

View Article and Find Full Text PDF

In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:

Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!