Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel host cell posttranslational modification system, termed sumoylation, has recently been characterized. Sumoylation is an enzymatic process that is biochemically analogous to, but functionally distinct from, ubiquitinylation. As in ubiquitinylation, sumoylation involves the covalent attachment of a small protein moiety, SUMO, to substrate proteins. However, conjugation of SUMO does not typically lead to degradation of the substrate and instead has a more diverse array of effects on substrate function. As the list of sumoylation substrates has expanded, a common theme is that many substrates exhibit sumoylation-dependent subcellular distribution. While the molecular mechanisms by which sumoylation targets protein localization are still poorly understood, it is clear that this modification system is an important regulator of intracellular protein localization, particularly involving nuclear uptake and punctate intranuclear accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/excr.2001.5366 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!