To ensure the sustainability of land systems in terms of nutrient cycling and maintenance of soil physical conditions, there is a need to understand soil organic matter (SOM) and its dynamics. It has been suggested that soil-carbon (C) models developed internationally do not perform well under New Zealand's unique climatic and soil mineralogical conditions. To test this hypothesis, we conducted 14C-labelled ryegrass decomposition studies and assessed the influence of abiotic factors on decomposition rates. These factors were characterized by estimating system mean residence times (MRTs) from estimates of first-order rate coefficients in a simple, three-compartment model. A range of MRTs obtained for decomposition was related to climatic conditions and soil properties. We summarise this work and extend this study to apply the Rothamsted soil-C turnover model, a five-compartment model, to our data with the view of testing both the model projections and the decomposability factors assumed in the model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0160-4120(01)00070-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!