Vascular endothelial growth factor (VEGF) stimulates the tyrosine phosphorylation of focal adhesion kinase (FAK), increases focal adhesion formation and is chemotactic for human umbilical-vein endothelial cells (HUVECs). In the present study we identified the major sites of VEGF-induced FAK tyrosine phosphorylation and investigated the mechanism mediating this pathway in the action of VEGF. VEGF increased the focal adhesion localization of FAK phosphorylated at Tyr-397 (Y397) and Y861 but stimulated a marked increase in phosphorylation at Y861 without significantly affecting the total level of phospho-Y397 FAK. Inhibition of Src with the specific inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) completely blocked VEGF-induced Y861 phosphorylation without decreasing the level of phospho-Y397 FAK. We also examined the role of Src in mediating endothelial functions of VEGF in which FAK has been implicated as having a role. PP2 markedly inhibited VEGF-induced chemotaxis and wound-healing cell migration. The Src inhibitor also decreased the anti-apoptotic effect of VEGF determined by surface staining of annexin V but did not increase FAK proteolysis or prevent the VEGF-dependent inhibition of FAK proteolysis. In contrast, the specific PtdIns 3-kinase inhibitor LY294002 induced apoptosis and markedly decreased p125(FAK) expression and increased FAK proteolysis but had little effect on Y861 phosphorylation. These findings identify Src-dependent FAK phosphorylation at Y861 as a novel VEGF-induced signalling pathway in endothelial cells and suggest that this pathway might be involved in the mechanisms mediating VEGF-induced endothelial cell migration and anti-apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222225 | PMC |
http://dx.doi.org/10.1042/0264-6021:3600255 | DOI Listing |
Clin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2025
Department of Medicine, Boston Medical Center and Department of Medicine, Boston University. Chobanian & Avedisian School of Medicine.
Transcriptomic analysis of microdissected human glomeruli has suggested novel molecular signatures associated with MN by revealing several genes differentially upregulated in MN compared to other glomerular diseases. We focused on a novel protein, Family with sequence similarity 114 member A1 (FAM114A1) that was identified as the top classifier gene in the dataset. To determine the localization of FAM114A1 within glomeruli, we performed immunofluorescence (IF) staining on normal human kidney specimens.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, and Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.
Chronic kidney fibrosis poses a significant global health challenge with effective therapeutic strategies remaining elusive. While cell-extracellular matrix (ECM) interactions are known to drive fibrosis progression, the specific role of focal adhesions (FAs) in kidney fibrosis is not fully understood. In this study, we investigated the role of FAs in kidney tubular epithelial cell fibrosis by employing precise nanogold patterning to modulate integrin distribution.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Orthopaedics, Jiujiang No.1 People's Hospital, No. 48, Taling South Road, Xunyang District, Jiujiang City, Jiangxi Province 332000, China.
This study investigates the influence of miR-128-2-5p within serum-derived exosomes (Exos) on COL6A2 expression and its implications in postmenopausal osteoporosis (POMP). Utilizing bioinformatics analysis, we identified 1317 differentially expressed genes (DEGs), primarily enriched in the focal adhesion pathway-a critical regulator of osteoblast adhesion. A significant gene, COL6A2, emerged as notably downregulated in POMP, possessing potential as a diagnostic marker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!