Insights into the catalytic mechanism of HlyC, the internal protein acyltransferase that activates Escherichia coli hemolysin toxin.

Biochemistry

Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, Box 70 581, East Tennessee State University, Johnson City, Tennessee 37614, USA.

Published: November 2001

AI Article Synopsis

Article Abstract

Hemolysin, a toxic protein secreted by pathogenic Escherichia coli, is converted from nontoxic prohemolysin, proHlyA, to toxic hemolysin, HlyA, by an internal protein acyltransferase, HlyC. Acyl-acyl carrier protein (ACP) is the essential acyl donor. The acyltransferase reaction proceeds through two partial reactions and entails formation of a reactive acyl-HlyC intermediate [Trent, M. S., Worsham, L. M., and Ernst-Fonberg, M. L. (1999) Biochemistry 38, 9541-9548]. The ping pong kinetic mechanism implied by these findings was validated using two different acyl-ACP substrates, thus verifying the independence of the previously demonstrated two partial reactions. Assessments of the stability of the acyl-HlyC intermediate revealed an increased stability at pH 8.6 compared to more acidic pHs. Mutations of a single conserved histidine residue essential for catalysis gave minimal activity when substituted with a tyrosine residue and no activity with a lysine residue. Unlike numerous other His23 mutants, however, the H23K enzyme showed significant acyl-HlyC formation although it was unable to transfer the acyl group from the proposed amide bond intermediate to proHlyA. These findings are compatible with transient formation of acyl-His23 during the course of HlyC catalysis. The effects of several other single site-directed mutations of conserved residues of HlyC on different portions of the reaction progress were examined using a 39 500 kDa fragment of proHlyA which was a more effective substrate than intact proHlyA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi011032hDOI Listing

Publication Analysis

Top Keywords

internal protein
8
protein acyltransferase
8
escherichia coli
8
partial reactions
8
acyl-hlyc intermediate
8
insights catalytic
4
catalytic mechanism
4
hlyc
4
mechanism hlyc
4
hlyc internal
4

Similar Publications

Background: Oral nutritional supplements (ONS) are commonly prescribed to provide protein and energy to hemodialysis (HD) patients. There is a debate about the appropriate timing to administer ONS. We aimed to study the effect of different timings of ONS on variable outcomes in HD patients.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by systemic inflammation. While RA primarily affects the joints, its systemic effects may lead to an increased cerebro- and cardiovascular risk. Atherosclerosis of the carotid arteries is a significant risk factor for cerebrovascular events and serves as a surrogate marker for cardiovascular risk.

View Article and Find Full Text PDF

Background: A recent prospective phase II study (ECOG-ACRIN E2211) demonstrated that MGMT deficiency was associated with a significant response to capecitabine and temozolomide (CAPTEM) in pancreatic neuroendocrine neoplasms (NENs); however, routine MGMT analysis in NENs was not recommended. Our study sought to demonstrate whether loss of MGMT protein expression is associated with improved overall survival (OS) in patients receiving CAPTEM for NENs from various tumor sites.

Materials And Methods: Paraffin-embedded tumor samples were evaluated by immunohistochemistry (IHC) using an MGMT monoclonal antibody.

View Article and Find Full Text PDF

Background: Individuals with cystic fibrosis (CF; a recessive disorder) have an increased risk of colorectal cancer (CRC). Evidence suggests individuals with a single CFTR variant may also have increased CRC risk.

Methods: Using population-based studies (GECCO, CORECT, CCFR, and ARIC; 53 785 CRC cases and 58 010 controls), we tested for an association between the most common CFTR variant (Phe508del) and CRC risk.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) is a leading cause of congenital infections and significant health complications in immunocompromised individuals. With no licensed CMV vaccine available, the development of the mRNA-1647 offers promising advancements in CMV prevention. We have reviewed results from Phase 1 and 2 clinical trials of the mRNA-1647 vaccine, demonstrating robust immune responses in both seronegative and seropositive participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!