Properties of small molecules affecting insulin receptor function.

Biochemistry

Health Care Discovery, Novo Nordisk A/S, Novo Alle 1, DK-2880 Bagsvaerd, Denmark.

Published: November 2001

Small molecules with insulin mimetic effects and oral availability are of interest for potential substitution of insulin injections in the treatment of diabetes. We have searched databases for compounds capable of mimicking one epitope of the insulin molecule known to be involved in binding to the insulin receptor (IR). This approach identifies thymolphthalein, which is an apparent weak agonist that displaces insulin from its receptor, stimulates auto- and substrate phosphorylation of IR, and potentiates lipogenesis in adipocytes in the presence of submaximal concentrations of insulin. The various effects are observed in the 10(-5)-10(-3) M range of ligand concentration and result in partial insulin activity. Furthermore, analogues of the related phenol red and fluorescein molecules fully displace insulin from the IR ectodomain, however, without insulin agonistic effects. The interactions are further characterized by NMR, UV-vis, and fluorescence spectroscopies. It is shown that both fluorescence and UV-vis changes in the ligand spectra induced by IR fragments occur with Kd values similar to those obtained in the displacement assay. Nevertheless, insulin itself cannot completely abolish binding of the small molecules. Determination of the binding stoichiometry reveals multiple binding sites for ligands of which one overlaps with the insulin binding site on the receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi015672wDOI Listing

Publication Analysis

Top Keywords

small molecules
12
insulin
12
insulin receptor
12
molecules insulin
8
binding
5
properties small
4
molecules
4
receptor
4
receptor function
4
function small
4

Similar Publications

Design strategies and biomedical applications of organic NIR-IIb fluorophores.

Chem Commun (Camb)

January 2025

Marshall Laboratory of Biomedical Engineering, International Cancer Center, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.

The introduction of fluorescence imaging (FLI) in near-infrared II sub-channels (NIR-IIb, 1500-1700 nm) has revolutionized the ability to explore complex patho-physiological settings . Despite the transformative potentials, the development of organic NIR IIb dyes encounters considerable difficulties, and only a limited number of such fluorophores have been developed so far. This review systematically introduces design strategies of organic NIR-IIb fluorophores classified by molecular scaffolds, mainly including cyanine dyes and D-A-D small molecule dyes.

View Article and Find Full Text PDF

A combined experimental and theoretical study is carried out on the three-body recombination process in a gas of microwave-shielded polar molecules. For ground-state polar molecules dressed with a strong microwave field, field-linked bound states can appear in the intermolecular potential. We model three-body recombination into such bound states using classical trajectory calculations.

View Article and Find Full Text PDF

Absorption-Emission Codes for Atomic and Molecular Quantum Information Platforms.

Phys Rev Lett

December 2024

University of Maryland, NIST, Joint Center for Quantum Information and Computer Science, /, College Park, Maryland 20742, USA.

Diatomic molecular codes [V. V. Albert, J.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.

View Article and Find Full Text PDF

Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!