Does stress influence ampicillin concentration in serum and tissues?

Eur J Drug Metab Pharmacokinet

Department of Pharmacology, Medical School, University of Athens, Greece.

Published: April 2002

Exercise produces changes of drug levels in plasma and increases the concentration of free fatty acids (FFAs), which may interfere with drug-protein binding. FFAs seem to play an antagonistic role to drugs since they have a strong binding capacity to serum albumin. The aim of this study was to evaluate the influence of the consecutive exercise-induced stress in ampicillin levels. Two groups of Wistar rats were used. Group A consisted of six subgroups that were subjected to cold swimming (4 degrees C) for 5, 10, 15, 20,25, 30 days respectively. Group B was the control group. The animals were injected im. with ampicillin (1 g/Kg/8h in 5 doses). Results showed that exercise enhanced stress parameters (FFAs, adrenal weight, Ht%) and led to an ampicillin increase in all experimental groups comparatively to controls.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03190392DOI Listing

Publication Analysis

Top Keywords

stress influence
4
ampicillin
4
influence ampicillin
4
ampicillin concentration
4
concentration serum
4
serum tissues?
4
tissues? exercise
4
exercise produces
4
produces changes
4
changes drug
4

Similar Publications

Background: Research has increasingly explored maternal resilience or protective factors that enable women to achieve healthier maternal and child outcomes. However, it has not adequately examined maternal resilience using a culturally-relevant, socio-ecological lens or how it may be influenced by early-life stressors and resources. The current study contributes to the literature on maternal resilience by qualitatively exploring the salient multi-level stressors and resources experienced over the lifecourse by predominantly low-income and minoritized women.

View Article and Find Full Text PDF

The underlying mechanisms of the association of bone health with depression - an experimental study.

Mol Biol Rep

January 2025

Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.

Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.

Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.

View Article and Find Full Text PDF

Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes.

Histochem Cell Biol

January 2025

Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.

Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics.

Anal Chem

January 2025

State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.

In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!