Xpa and Xpa/p53+/- knockout mice: overview of available data.

Toxicol Pathol

RIVM, Laboratory of Health Effects Research, Bilthoven, The Netherlands.

Published: March 2002

DNA repair deficient Xpa-/- and Xpa-/-/p53+/- knock-out mice in a C57BL/6 genetic background, referred to as respectively the XPA and XPA/p53 model, were investigated in the international collaborative research program coordinated by International Life Sciences Institute (ILSI)/Health and Environmental Science Institute. From the selected list of 21 ILSI compounds, 13 were tested in the XPA model, and 10 in the XPA/p53 model. With one exception, all studies had a duration of 9 months (39 weeks). The observed spontaneous tumor incidence for the XPA model after 9 months was comparable to that of wild-type mice (total 6%). For the XPA/p53 model, this was somewhat higher (9%/13% for males/females). The 3 positive control compounds used, B[a]P, p-cresidine, and 2-AAF, gave positive and consistent tumor responses in both the XPA and XPA/p53 model, but no or lower responses in wild-type mice. From the 13 ILSI compounds tested, the single genotoxic carcinogen (phenacetin) was negative in both the XPA and XPA/p53 model. Positive tumor responses were observed for 4 compounds, the immunosuppressant cyclosporin A, the hormone carcinogens DES and estradiol, and the peroxisome proliferator WY-14,643. Negative results were obtained with 5 other nongenotoxic rodent carcinogens, and 2 noncarcinogens tested. As expected, both DNA repair deficient models respond to genotoxic carcinogens. Combined with previous results, 6 out of 7 (86%) of the genotoxic human and/or rodent carcinogens tested are positive in the XPA model. The positive results obtained with the 4 mentioned nongenotoxic ILSI compounds may point to other carcinogenic mechanisms involved, or may raise some doubts about their true nongenotoxic nature. In general. the XPA/p53 model appears to be more sensitive to carcinogens than the XPA model.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0192623013014189281DOI Listing

Publication Analysis

Top Keywords

xpa/p53 model
24
xpa model
16
xpa xpa/p53
12
ilsi compounds
12
model
10
xpa
8
dna repair
8
repair deficient
8
compounds tested
8
wild-type mice
8

Similar Publications

An accurate assessment of the carcinogenic potential of chemicals and pharmaceutical drugs is essential to protect humans and the environment. Therefore, substances are extensively tested before they are marketed to the public. Currently, the rodent two-year bioassay is still routinely used to assess the carcinogenic potential of substances.

View Article and Find Full Text PDF

The traditional 2-year cancer bioassay needs replacement by more cost-effective and predictive tests. The use of toxicogenomics in an in vitro system may provide a more high-throughput method to investigate early alterations induced by carcinogens. Recently, the differential gene expression response in wild-type and cancer-prone Xpa (-/-) p53 (+/-) primary mouse hepatocytes after exposure to benzo[a]pyrene (B[a]P) revealed downregulation of cancer-related pathways in Xpa (-/-) p53 (+/-) hepatocytes only.

View Article and Find Full Text PDF

The current method to predict carcinogenicity of chemicals or drugs is the chronic 2-year rodent bioassay, which has disadvantages in duration, animal use, and specificity. An attractive alternative is the DNA repair-deficient Xpa(-/-)p53(+/-) mouse model that is sensitive to both genotoxic and nongenotoxic carcinogens. A next step in alternative carcinogenicity testing is the development of reliable in vitro systems.

View Article and Find Full Text PDF

Finding transcriptomics biomarkers for in vivo identification of (non-)genotoxic carcinogens using wild-type and Xpa/p53 mutant mouse models.

Carcinogenesis

October 2009

MicroArray Department and Integrative Bioinformatics Unit, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.

The carcinogenic potential of chemicals and pharmaceuticals is traditionally tested in the chronic, 2 year rodent bioassay. This assay is not only time consuming, expensive and often with a limited sensitivity and specificity but it also causes major distress to the experimental animals. A major improvement in carcinogenicity testing, especially regarding reduction and refinement of animal experimentation, could be the application of toxicogenomics.

View Article and Find Full Text PDF

The DNA repair-deficient Xpa(-/-)p53(+/-) (Xpa/p53) mouse is a potent model for carcinogenicity testing, representing increased sensitivity toward genotoxic but surprisingly also toward true human non-genotoxic carcinogens. The mechanism of this increased sensitivity in Xpa/p53 mice toward non-genotoxic carcinogens is still unknown. Here, we investigated the mechanism of the human non-genotoxic carcinogen cyclosporine A (CsA) in the Xpa/p53 mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!