Xeroderma pigmentosum (XP) is a rare autosomal recessive disease in which repair of ultraviolet (UV)-induced DNA damage is impaired or is totally absent due to mutations in genes controlling the DNA repair pathway known as nucleotide excision repair (NER). XP is characterized, in part, by extreme sensitivity of the skin to sunlight, and XP patients have a more than 1000-fold increased risk of developing cancer at sun-exposed areas of the skin. To study the role of NER in chemical-induced tumorigenesis in more detail, the authors developed Xpa-/- homozygous knockout mice with a complete defect in NER (designated as Xpa mice or XPA model). Xpa mice develop skin tumors at high frequency when exposed to UV light, and as such, they mimic the phenotype of human XP. Moreover, the Xpa mice also appear to be susceptible to genotoxic carcinogens given orally. Based on these phenotypic characteristics, the Xpa mice were considered to be an attractive candidate mouse model for use in identifying human carcinogens. In an attempt to further increase both the sensitivity and specificity of the XPA model in carcinogenicity testing, the authors crossed Xpa mice with mice having a heterozygous defect in the tumor suppressor gene p53. Xpa/p53+/- double knockout mice develop tumors earlier and with higher incidences upon exposure to carcinogens as compared to their single knockout counterparts. Here the authors describe the development and features of the Xpa mouse and present some examples of the Xpa and Xpa/p53+/- mouse models' sensitivity towards genotoxic carcinogens. It appeared that the Xpa/p53+/- double knockout mouse model is favorable over both the Xpa and p53+/- single knockout models in short-term carcinogenicity testing. In addition to the fact that the double knockout mice respond more robustly to carcinogens, they also appear to respond in a very discriminative way. All compounds identified thus far are true (human) carcinogens, and, therefore, the authors believe that the Xpa/p53+/- mouse model is an excellent candidate for a future replacement of the chronic mouse bioassay, at least for certain classes of chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1080/019262301753178519DOI Listing

Publication Analysis

Top Keywords

xpa mice
20
knockout mice
12
mouse model
12
double knockout
12
xpa
11
mice
10
xpa xpa/p53+/-
8
xpa model
8
mice develop
8
genotoxic carcinogens
8

Similar Publications

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Dietary exposure to aflatoxin B1 (AFB1) is a risk factor for the development of hepatocellular carcinomas. Following metabolic activation, AFB1 reacts with guanines to form covalent DNA adducts, which induce high-frequency G > T transversions. The molecular signature associated with these mutational events aligns with the single-base substitution signature 24 (SBS24) in the Catalog of Somatic Mutations in Cancer database.

View Article and Find Full Text PDF

Background: Research underscores the significant influence of histone lactylation pathways in the progression of Alzheimer's disease (AD), though the molecular mechanisms associated with histone lactylation-related genes (HLRGs) in AD are still insufficiently investigated.

Methods: This study employed datasets GSE85426 and GSE97760 to identify candidate genes by intersecting weighted gene co-expression network analysis (WGCNA) module genes with AD-control differentially expressed genes (DEGs). Subsequently, machine learning refined key genes, validated by receiver operating characteristic (ROC) curve performance.

View Article and Find Full Text PDF

Photosensitivity can be due to numerous causes. The photosensitivity associated with deficiency of xeroderma pigmentosum type A (XPA) has been previously shown to be associated with excess levels of the lipid mediator platelet-activating factor (PAF) generated by the keratinocyte. As PAF has been reported to trigger the production of subcellular microvesicle particles (MVP) due to the enzyme acid sphingomyelinase (aSMase), the goal of these studies was to discern if PAF and aSMase could serve as therapeutic targets for the XPA deficiency photosensitivity.

View Article and Find Full Text PDF

An X-ray inactivated vaccine against Pseudomonas aeruginosa Keratitis in mice.

Vaccine

July 2023

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China. Electronic address:

Pseudomonas aeruginosa (P. aeruginosa) is one of the most prevalent pathogens of bacterial keratitis. Bacterial keratitis is a major cause of blindness worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!