The suitability of culture supernatant from Streptomyces albus ATCC 3005 for use in the biobleaching of eucalyptus kraft pulp was investigated. S. albus was found to grow on a minimal salts medium containing oat spelts xylan and yeast extract as the main carbon and nitrogen sources, respectively. Maximal extracellular xylanase and peroxidase production was detected after 120 h (11.97 U ml(-1)) and 72 h (0.58 U ml(-1)), respectively. Importantly, no cellulase activity could be detected. When the effect of pH on enzyme activity was examined, maximal xylanase and peroxidase activity was obtained at pH 6.5 and pH 9.9, respectively. The optimum hydrogen peroxide (H2O2) concentration for peroxidase activity was found to occur at 20 mM, with peroxidase remaining active at 100 mM H2O2 after 1 h incubation at 53 degrees C; the half-life of the enzyme at that temperature was estimated to be 33 min. Short-term (1 h) biobleaching of eucalyptus kraft pulp with culture supernatant from S. albus in the presence of H2O2 resulted in a significant reduction of kappa number (2.85 units) with no change in viscosity. These results suggest a potential application of cellulase-free culture supernatants from S. albus in biobleaching.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002530100740 | DOI Listing |
Carbohydr Res
August 2024
Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, 12602-810, Lorena, São Paulo, Brazil. Electronic address:
Cellulose nanocrystals (CNCs) produced through enzymatic hydrolysis exhibit physicochemical properties that make them attractive as eco-friendly reinforcing agents in polymer composites. However, the extent of their efficacy within a polymeric matrix is yet to be fully established. This study investigated the reinforcing capabilities of enzymatic CNC (approximately 3 nm in diameter) isolated from bleached eucalyptus Kraft pulp (BEKP), focusing on its application in polypropylene (PP) nanocomposites produced by injection molding.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2024
Department of Forestry Science - DCF, Federal University of Lavras, University Campus, Lavras, MG, Zip Code 37200-000, Brazil.
Thermo-mechanical pulping produces well-individualized fibers compared to wood particles and less fragile fibers compared to Kraft pulping, besides presenting higher volume, higher yield, and lower production cost, which can be an exciting alternative for the fiber-cement industries. This study evaluated the impact of soak and dry-aging cycles on the performance of extruded composites reinforced with non-bleached eucalyptus fibers. The cement matrix comprised cement (70%) and limestone (30%).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2024
CERES, Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal.
The influence of pulp carryover on the efficiency of the xylanase (X) treatment of industrial unbleached and oxygen-delignified eucalypt kraft pulps (A1 and A2 pulps, with kappa number (KN) values of 16 and 10, respectively), collected at the same pulp mill, was studied regarding the consumption of bleaching chemicals and pulp bleachability. Another non-oxygen-delignified eucalyptus kraft pulp of KN 13 was received after the extended cooking from a different pulp mill (pulp B). The assays were performed with both lab-washed (carryover-free) and unwashed (carryover-rich) pulps.
View Article and Find Full Text PDFCarbohydr Polym
April 2024
Department of Forest Science, Federal University of Lavras, Lavras, Brazil.
Multivariate models were developed to classify cellulose nanofibril (CNF) fibrillation by a quality index from near infrared (NIR) spectra. Commercial pulps of Eucalyptus spp. were used to produce cellulose nanofibrils by means of a fibrillator mill.
View Article and Find Full Text PDFMolecules
December 2023
Laboratory of Pulp and Paper Science and Graphic Arts, University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble INP, LGP2, F-38000 Grenoble, France.
Converting paper-grade bleached Kraft pulp into dissolving pulp using eco-friendly chemicals on-site at the mill is a challenge for the pulp industry. In this study, two oxidation systems are evaluated: the first one is based on the use of hydrogen peroxide at various levels of alkalinity; the second one investigates the use of sodium periodate followed by hydrogen peroxide to convert aldehydes into carboxyls and enhance their hemicelluloses removal. Our results have shown that when using only peroxide, the removal of hemicelluloses was not sufficient to improve the pulp's dissolving ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!