The effects of an induced hyperinsulinemia on both the cholesterol and bile acid metabolisms were analyzed in the hamster. The role of dietary sucrose as modulator of these effects was evaluated by feeding the animals with two semi-synthetic diets containing a low (SD, 20%) and a high (LD, 62.5%) sucrose proportion. Hamsters fed under basal nutritional conditions (chow diet, CD) were also used. LD enabled the consequences of an insulin infusion on cholesterol gallstone formation to be evaluated. Subcutaneous osmotic pumps were implanted in all the animals and delivered either 3 IU/day of insulin (insulin groups: CDI, SDI, LDI) or saline (control groups: CDC, SDC, LDC). Several parameters bound to lipid metabolism were measured. The plasma cholesterol concentration remained constant in all the insulin treated groups compared to the controls. Phospholipid and triglyceride concentrations decreased in both the plasma and liver in the CDI and SDI groups. A lower SR-BI mass (around 50%) was found in the liver of CDI and SDI hamsters with concomitant higher hydroxy-methyl-glutaryl coenzyme A reductase activity. The LDL-receptor mass and cholesterol 7alpha-hydroxylase activity in the LDI group were both decreased (-47%, -71% respectively). No variations in the cholesterol gallstone incidence were observed. In conclusion, chronic insulin infusion in growing hamsters induced similar effects on cholesterol metabolism in the CD and SD groups but different ones, between diets containing a low (SD) and a high (LD) sucrose proportion. The distribution of triglycerides and phospholipids in the plasma, liver and bile was also affected by the insulin infusion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0024-3205(01)01331-5DOI Listing

Publication Analysis

Top Keywords

insulin infusion
16
cdi sdi
12
bile acid
8
diets low
8
sucrose proportion
8
cholesterol gallstone
8
plasma liver
8
liver cdi
8
insulin
7
cholesterol
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!