The contribution of exon-skipping events on chromosome 22 to protein coding diversity.

Genome Res

South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa.

Published: November 2001

Completion of the human genome sequence provides evidence for a gene count with lower bound 30,000-40,000. Significant protein complexity may derive in part from multiple transcript isoforms. Recent EST based studies have revealed that alternate transcription, including alternative splicing, polyadenylation and transcription start sites, occurs within at least 30-40% of human genes. Transcript form surveys have yet to integrate the genomic context, expression, frequency, and contribution to protein diversity of isoform variation. We determine here the degree to which protein coding diversity may be influenced by alternate expression of transcripts by exhaustive manual confirmation of genome sequence annotation, and comparison to available transcript data to accurately associate skipped exon isoforms with genomic sequence. Relative expression levels of transcripts are estimated from EST database representation. The rigorous in silico method accurately identifies exon skipping using verified genome sequence. 545 genes have been studied in this first hand-curated assessment of exon skipping on chromosome 22. Combining manual assessment with software screening of exon boundaries provides a highly accurate and internally consistent indication of skipping frequency. 57 of 62 exon skipping events occur in the protein coding regions of 52 genes. A single gene, (FBXO7) expresses an exon repetition. 59% of highly represented multi-exon genes are likely to express exon-skipped isoforms in ratios that vary from 1:1 to 1:>100. The proportion of all transcripts corresponding to multi-exon genes that exhibit an exon skip is estimated to be 5%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC311148PMC
http://dx.doi.org/10.1101/gr.188001DOI Listing

Publication Analysis

Top Keywords

protein coding
12
genome sequence
12
exon skipping
12
coding diversity
8
multi-exon genes
8
exon
7
protein
5
genes
5
contribution exon-skipping
4
exon-skipping events
4

Similar Publications

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

Hance is an important plant owing to its medicinal root and edible fruit, and extensively distributed in China. In this study, we reported the complete chloroplast genome of . The chloroplast genome was 156,335 bp in size with the overall GC content of 37.

View Article and Find Full Text PDF

, a significant folk medicinal plant, is utilized to treat a variety of ailments. In this study, we reported the complete chloroplast genome sequence of this species. The length of the complete chloroplast genome was 155,810 bp, included a pair of inverted repeat (IR) regions (26,340 bp), a large single-copy region (LSC, 84,853 bp), and a small single-copy region (SSC, 18,277 bp).

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as (HSV-1), (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as (CP), (HP), (), Spirochetes and eukaryotic unicellular parasites (e.

View Article and Find Full Text PDF

analysis of lncRNA-miRNA-mRNA signatures related to Sorafenib effectiveness in liver cancer cells.

World J Gastroenterol

January 2025

Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain.

Background: Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide. Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC. Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!