The differential cross section, d sigma/dt, for rho(0) meson photoproduction on the proton above the resonance region was measured up to a momentum transfer -t = 5 GeV2 using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The rho(0) channel was extracted from the measured two charged-pion cross sections by fitting the pi(+)pi(-) and p pi(+) invariant masses. The low momentum transfer region shows the typical diffractive pattern expected from Reggeon exchange. The flatter behavior at large -t cannot be explained solely in terms of QCD-inspired two-gluon exchange models. The data indicate that other processes, like quark interchange, are important to fully describe rho photoproduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.87.172002 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Clinical Surgery, Cty Clin Emergency Hosp, Sibiu, Romania.
This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, China.
The spin angular momentum (SAM) plays a significant role in light-matter interactions. It is well known that light carrying SAM can exert optical torques on micro-objects and drive rotations, but 3D rotation around an arbitrary axis remains challenging. Here, we demonstrate full control of the 3D optical torque acting on a trapped microparticle by tailoring the vectorial SAM transfer.
View Article and Find Full Text PDFHeliyon
December 2024
School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK.
Heliyon
December 2024
Department of Physics, College of Science, University of Bisha, P.O. Box 344, Bisha, 61922, Saudi Arabia.
The ability of nanofluids to improve heat transmission in thermal systems is well established. This work investigates the three-dimensional theoretical behavior of Darcy-Forchheimer nanofluids in tilted magnetohydrodynamics. In this study, the Soret effect, micro-motile organisms, thermophoresis, and heat radiation are also considered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!