In this paper, the evolution of the induced axial magnetization due to the propagation of an electromagnetic (em) wave along the static background magnetic field in a two-component plasma has been investigated using the Block equation. The evolution process induces a strong magnetic anisotropy in the plasma medium, depending nonlinearly on the incident wave amplitude. This induced magnetic anisotropy can modify the dispersion relation of the incident em wave, which has been obtained in this paper. In the low frequency Alfven wave limit, this dispersion relation shows that the resulting phase velocity of the incident wave depends on the square of the incident wave amplitude and on the static background magnetic field of plasma. The analytical results are in well agreement with the numerically estimated values in solar corona and sunspots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.64.046401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!