A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrafast generation of magnetic fields in a Schottky diode. | LitMetric

Ultrafast generation of magnetic fields in a Schottky diode.

Nature

Laboratorium für Festkörperphysik, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland.

Published: November 2001

For the development of future magnetic data storage technologies, the ultrafast generation of local magnetic fields is essential. Subnanosecond excitation of the magnetic state has so far been achieved by launching current pulses into micro-coils and micro-striplines and by using high-energy electron beams. Local injection of a spin-polarized current through an all-metal junction has been proposed as an efficient method of switching magnetic elements, and experiments seem to confirm this. Spin injection has also been observed in hybrid ferromagnetic-semiconductor structures. Here we introduce a different scheme for the ultrafast generation of local magnetic fields in such a hybrid structure. The basis of our approach is to optically pump a Schottky diode with a focused, approximately 150-fs laser pulse. The laser pulse generates a current across the semiconductor-metal junction, which in turn gives rise to an in-plane magnetic field. This scheme combines the localization of current injection techniques with the speed of current generation at a Schottky barrier. Specific advantages include the ability to rapidly create local fields along any in-plane direction anywhere on the sample, the ability to scan the field over many magnetic elements and the ability to tune the magnitude of the field with the diode bias voltage.

Download full-text PDF

Source
http://dx.doi.org/10.1038/35102026DOI Listing

Publication Analysis

Top Keywords

ultrafast generation
12
magnetic fields
12
magnetic
8
schottky diode
8
generation local
8
local magnetic
8
magnetic elements
8
laser pulse
8
current
5
generation magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!