A steady-state kinetic mechanism describing the interaction of M(2) muscarinic acetylcholine receptors and the guanine nucleotide-binding protein G(i)alpha(2)beta(1)gamma(3) are presented. Data are consistent with two parallel pathways of agonist-promoted GTPase activity arising from receptor coupled to a single or multiple guanine nucleotide-binding proteins. An aspartate 103 to asparagine receptor mutation resulted in a receptor lacking the ability to catalyze the binding of guanosine-5'-O-(3-thiotriphosphate) or guanosine triphosphate hydrolysis by the G protein. An aspartate 69 to asparagine receptor mutant was able to catalyze agonist-specific guanine nucleotide exchange and GTPase activity. A threonine 187 to alanine receptor mutation resulted in a receptor that catalyzed guanine nucleotide exchange comparable with wild-type receptors but had reduced ability to stimulate GTP hydrolysis. A tyrosine 403 to phenylalanine receptor mutation resulted in an increase in agonist-promoted GTPAse activity compared with wild type. The observation that the threonine 187 and tyrosine 403 mutants promote guanine nucleotide exchange similarly to wild type but alter GTPase activity compared with wild type suggests that the effects of the mutations arise downstream from guanine nucleotide exchange and may result from changes in receptor-G protein dissociation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M104210200 | DOI Listing |
Mol Biol Rep
January 2025
Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.
Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.
Aging Dis
January 2025
Geriatrics department, Renmin hospital of Wuhan University, Wuhan 430060, China.
Autophagy in microglia is essential for the clearance of amyloid-beta (Aβ) and amyloid plaques in Alzheimer's disease. However, reports regarding the levels of autophagy in microglia have been inconsistent; some studies indicate an early enhancement followed by a subsequent reduction, while others describe a persistently weakened state. Notably, there is a lack of systematic studies documenting the temporal changes in microglial autophagy.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, H3T 1J4, Canada.
Intense research on founding members of the RAS superfamily has defined our understanding of these critical signalling proteins, leading to the premise that small GTPases function as molecular switches dependent on differential nucleotide loading. The closest homologs of H/K/NRAS are the three-member RRAS family, and interest in the MRAS GTPase as a regulator of MAPK activity has recently intensified. We show here that MRAS does not function as a classical switch and is unable to exchange GDP-to-GTP in solution or when tethered to a lipid bilayer.
View Article and Find Full Text PDFOpen Biol
January 2025
Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO 80045, USA.
Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Vegetable and Fruit Improvement Center and Department of Horticultural Sciences Texas A&M University, College Station, TX 77843, USA.
Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!