We examined the correlation of functional and structural abnormalities of cardiac mitochondria created by pathogenic mutant mtDNAs using mito-mice with hearts carrying 88% mutant DeltamtDNA4696 with a 4696 deletion. COX histochemistry, quantitative PCR analysis, and electronmicrographs showed that accumulation of 91.6% DeltamtDNA4696 in single cardiac muscle fibers induced progressive reduction of COX activity to form COX-negative fibers. Moreover, hearts carrying 88% DeltamtDNA4696 consisted of three types of cardiac muscle fibers with different functional properties, COX-positive, -negative, and -intermediate fibers, which corresponded respectively to three types of fibers with different structural properties; type A fibers containing mitochondria with only lamellar cristae, type B containing mitochondria with only tubular cristae, and type C possessing mitochondria with both lamellar and tubular cristae. These observations suggest that lamellar cristae with COX activity transform into tubular cristae without COX activity along with the accumulation of DeltamtDNA4696, which would be responsible for insufficient supply of mtDNA products required to keep the normal structure and function of mitochondrial cristae. The correlation of these structural and functional abnormalities of cristae should provide important insight into diagnosis of cardiomyopathies caused by accumulation of pathogenic mutant mtDNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.2001.5873DOI Listing

Publication Analysis

Top Keywords

pathogenic mutant
12
cox activity
12
tubular cristae
12
correlation functional
8
mutant mtdnas
8
hearts carrying
8
carrying 88%
8
cardiac muscle
8
muscle fibers
8
three types
8

Similar Publications

Screening a library of temperature-sensitive mutants to identify secretion factors in .

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.

View Article and Find Full Text PDF

Unlabelled: Type IV pili (T4P) are important virulence factors that allow bacteria to adhere to and rapidly colonize their hosts. T4P are primarily composed of major pilins that undergo cycles of extension and retraction and minor pilins that initiate pilus assembly. Bacteriophages use T4P as receptors and exploit pilus dynamics to infect their hosts.

View Article and Find Full Text PDF

subsp. () possesses a -specific uter embrane rotein XAC1347 (OMP) that exerts a role in the expression of the type III secretion system for pathogenicity. In this study, we reported that OMP was required for salt stress tolerance and cell membrane integrity, as well as the expression of the genes for the production of extracellular polysaccharides.

View Article and Find Full Text PDF

Expression, purification and immunogenicity analyses of receptor binding domain protein of severe acute respiratory syndrome coronavirus 2 from delta variant.

Vet Res Forum

December 2024

Institute of Pathogenic Microbiology, College of Biological Science and Engineering, and Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, China.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. The receptor binding domain (RBD), located at the spike protein of SARS-CoV-2, contains most of the neutralizing epitopes during viral infection and is an ideal antigen for vaccine development. In this study, bioinformatic analysis of the amino acid sequence data of SARS-CoV-2 RBD protein for the better understanding of molecular characteristics was performed.

View Article and Find Full Text PDF

Congenital heart disease (CHD) represents nearly one-third of congenital birth defects annually, with ventricular septal defect (VSD) being the most common type. The aim of this study was to explore the role of specific GATA binding protein 6 gene () mutations as a potential etiological factor in the development of VSD through an in silico approach. Data were collected from the human gene databases: DisGeNET and GeneCards, with protein-protein interaction networks constructed via STRING and Cytoscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!