Klebsiella pneumoniae, a mercury-resistant bacterial strain able to reduce ionic mercury to metallic mercury, was isolated from wastewater of Casablanca. This strain exhibits high minimal inhibition concentrations for heavy metals such as mercury 2400 microM, lead 8000 microM, silver 2400 microM, and cadmium 1000 microM. This bacterium was immobilized in alginate, polyacrylamide, vermiculite, and cooper beech and was used for removing mercury from a synthetic water polluted by mercury by using a fluidized bead bioreactor. Immobilized bacterial cells of Klebsiella pneumoniae could effectively volatilize mercury and detoxify mercury compounds. Moreover, the efficiency of mercury volatilization was much greater than with the native cells. The highest cleanup and volatilization rates were obtained when Klebsiella pneumoniae was entrapped in alginate beads, with a cleanup rate of 100% and a volatilization rate of 89%. Immobilized cells in alginate continuously volatilized mercury even after 10 days without loss of activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002840010310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!