The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds.

Arch Latinoam Nutr

Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Medicina Experimental, Laboratorio de Fisiopatología-Caracas, Venezuela.

Published: March 2001

The effect of a pH change from 2 to 6 was tested on the solubility of ferrous sulfate, ferrous fumarate, iron bis-glycine chelate (Ferrochel) and sodium-iron ethylenediaminetetraacetic acid (NaFeEDTA). It was found that at pH 2 ferrous sulfate, Ferrochel and NaFeEDTA were completely soluble and only 75% of iron from ferrous fumarate was soluble. When pH was raised to 6, iron from amino acid chelate and NaFeEDTA remained completely soluble while solubility from ferrous sulfate and ferrous fumarate decreased 64 and 74%, respectively compared to the amount of iron initially soluble at pH 2. These results suggest that iron solubility from iron bis-glycine chelate and NaFeEDTA is not affected by pH changes within the ranges tested, probably because iron remained associated to the respective compounds.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ferrous sulfate
12
ferrous fumarate
12
iron
9
solubility iron
8
solubility ferrous
8
sulfate ferrous
8
iron bis-glycine
8
bis-glycine chelate
8
completely soluble
8
chelate nafeedta
8

Similar Publications

Bariatric surgery and HIV: Joint venture between family, primary care, and HIV physicians.

J Family Med Prim Care

December 2024

Department of HIV and Blood Borne Viruses, Milton Keynes University Hospital, NHS Foundation Trust, Milton Keynes, UK.

We report a case of a 49-year-old female with a history of HIV infection for 12 years. The patient had excellent compliance with antiretroviral medications, raltegravir 400 mg twice daily and truvada once daily for HIV. Over the years, she maintained an undetectable viral load with a CD4+ count >200 cells/μL.

View Article and Find Full Text PDF

Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.

View Article and Find Full Text PDF

Background: Recent biomedical research has shown the unusual, multisystem effects of coronavirus disease 2019 in humans. One specific sequela of a primary severe acute respiratory syndrome coronavirus 2 infection is the reactivation of latent viruses in various tissues, such as Epstein-Barr virus. Epstein-Barr virus has been identified in many inflammatory gastrointestinal lesions, such as microscopic gastritides and colitides.

View Article and Find Full Text PDF

Absence of gut microbiota alleviates iron overload-induced colitis by modulating ferroptosis in mice.

J Adv Res

December 2024

Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Introduction: Iron overload disrupts gut microbiota and induces ferroptosis, contributing to colitis. However, whether gut microbiota directly drives iron overload-induced colitis and its underlying mechanism remain unclear.

Objectives: The study aimed to explore whether gut microbiota can directly regulate iron overload-induced colitis and its underling mechanism.

View Article and Find Full Text PDF

The treatment of biodegradable plastics through composting has garnered increasing attention. This study aimed to investigate the effects of Biochar FN1 bacteria and ferrous sulfate on nitrogen retention, greenhouse gas emissions, and degradable plastics during composting and to elucidate their synergistic mechanisms on microbial communities. Compared with the control, applying biochar-loaded FN1 bacteria composites combined with Ferrous sulfate (SGC) markedly accelerated organic matter degradation and reduced cumulative CO and NH emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!