Adaptation to amino acid deficiency is critical for cell survival. In yeast, this adaptation involves phosphorylation of the translation eukaryotic initiation factor (eIF) 2alpha by the kinase GCN2. This leads to the increased translation of the transcription factor GCN4, which in turn increases transcription of amino acid biosynthetic genes, at a time when expression of most genes decreases. Here it is shown that translation of the arginine/lysine transporter cat-1 mRNA increases during amino acid starvation of mammalian cells. This increase requires both GCN2 phosphorylation of eIF2alpha and the translation of a 48-amino acid upstream open reading frame (uORF) present within the 5'-leader of the transporter mRNA. When this 5'-leader was placed in a bicistronic mRNA expression vector, it functioned as an internal ribosomal entry sequence and its regulated activity was dependent on uORF translation. Amino acid starvation also induced translation of monocistronic mRNAs containing the cat-1 5'-leader, in a manner dependent on eIF2alpha phosphorylation and translation of the 48-amino acid uORF. This is the first example of mammalian regulation of internal ribosomal entry sequence-mediated translation by eIF2alpha phosphorylation during amino acid starvation, suggesting that the mechanism of induced Cat-1 protein synthesis is part of the adaptive response of cells to amino acid limitation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M109199200DOI Listing

Publication Analysis

Top Keywords

amino acid
24
phosphorylation translation
12
acid starvation
12
translation
10
regulation internal
8
translation eukaryotic
8
eukaryotic initiation
8
upstream open
8
open reading
8
reading frame
8

Similar Publications

Proteic plasmid addiction systems, such as the control of cell death (Ccd), have been used for efficient plasmid DNA recombination. The CcdB toxin, which has a relatively long sequence of 309 bp, has been the predominant choice for this purpose. However, the need for shorter peptide toxins has emerged.

View Article and Find Full Text PDF

Background And Aim: Goupi Plaster (GP) is topical traditional Chinese medicine preparation. It has been used to treat Knee Osteoarthritis (KOA) in clinical practice of traditional Chinese medicine (TCM). However, the mechanisms of GP relieve KOA are poorly understood.

View Article and Find Full Text PDF

Identification and characterization of multiple novel viruses in fecal samples of cormorants.

Front Vet Sci

January 2025

Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.

Introduction: Cormorants, as protected wild animals by the State Forestry Administration of China, have a broad distribution across China. Previous studies have shown that they can be infected with multiple viruses in the , , , and families. There is limited knowledge about the other viruses that cormorants may carry and infect.

View Article and Find Full Text PDF

The article provides an overview of the current understanding of the interplay between metabolic pathways and immune function in the context of triple-negative breast cancer (TNBC). It highlights recent advancements in single-cell and spatial transcriptomics technologies, which have revolutionized the analysis of tumor heterogeneity and the immune microenvironment in TNBC. The review emphasizes the crucial role of metabolic reprogramming in modulating immune cell function, discussing how specific metabolic pathways, such as glycolysis, lipid metabolism, and amino acid metabolism, can directly impact the activity and phenotypes of various immune cell populations within the TNBC tumor microenvironment.

View Article and Find Full Text PDF

Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions.

Front Plant Sci

January 2025

Key Laboratory of Innovation of Forage Efficient Production Model, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia Hui Autonomous Region, China.

Introduction: Salt stress significantly affects plant growth, and Na has gained attention for its potential to enhance plant adaptability to saline conditions. However, the interactions between Na, plants, and rhizosphere bacterial communities remain unclear, hindering a deeper understanding of how Na contributes to plant resilience under salt stress.

Methods: This study aimed to investigate the mechanisms through which Na promotes alfalfa's adaptation to salt stress by modifying rhizosphere bacterial communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!