We developed a fluorescence-based assay method for determining ligand binding activities of C-reactive protein (CRP) in solution. Using this method, we compared the phosphorylcholine (PC)- and polycation-based binding activities of human CRP. The PC-based binding required calcium, whereas a polycation (e.g. poly-l-lysine) was bound in the presence of either calcium or EDTA, the binding being stronger in the presence of EDTA. The published crystallographic structures of CRP and the CRP.PC complex show it to be a ring-shaped pentamer with a single PC-binding site per subunit facing the same direction. As expected from such a structure, binding affinity of a ligand increased tremendously when multiple PC residues were present on a macromolecular structure. In addition to PC-related structures, certain sugar phosphates (e.g. galactose 6-phosphate) are bound near the PC-binding site, and one of the sugar hydroxyl groups appears to interact with CRP. The best small ligands for the polycationic binding site were Lys-Lys and Lys4. Because of the presence of multiple Lys-Lys sequences, polylysines have tremendously enhanced affinity. Although PC inhibits both PC- and polycation-based binding, none of the amines that inhibit polylysine binding inhibits PC binding, suggesting that the PC and polycationic binding sites do not overlap.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M106039200DOI Listing

Publication Analysis

Top Keywords

binding
11
c-reactive protein
8
binding sites
8
binding activities
8
pc- polycation-based
8
polycation-based binding
8
pc-binding site
8
polycationic binding
8
mapping binding
4
binding areas
4

Similar Publications

Efficient and accurate drug-target affinity (DTA) prediction can significantly accelerate the drug development process. Recently, deep learning models have been widely applied to DTA prediction and have achieved notable success. However, existing methods often encounter several common issues: first, the data representations lack sufficient information; second, the extracted features are not comprehensive; and third, most methods lack interpretability when modeling drug-target binding.

View Article and Find Full Text PDF

Objective: Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC.

View Article and Find Full Text PDF

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain.

View Article and Find Full Text PDF

This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!