In this study, the metabolic activation of 2,2-dichloro-1,1,1-trifluoroethane (hydrochlorofluorocarbons-123, HCFC-123), halothane or 1,1-dichloro-1-fluoroethane (HCFC-141b) was compared to that of perchloroethylene, using lymphoblastoma derived cell lines expressing human CYP1A1, CYP1A2, CYP2E1, CYP2A6 and CYP3A4 (MCL-5 cells). A dose dependent increase in micronucleus formation was detected over a nominal concentration range of 0.05-2 mM for HCFC-123 and halothane, but this was not seen with HCFC-141b. No dose response for HCFC-123 was seen in a control cHo1 cell line not expressing this cytochrome P450's. Cell lines expressing individual human cytochrome P-450 (CYP) forms were also used to define the enzymes responsible for the clastogenic events and to investigate the formation of immunoreactive protein by microsomal fractions. It was shown that CYP2E1 or CYP2B6 catalysed the clastogenic response, but CYP2D6, CYP3A4, CYP1A2 or CYP1A1 all appeared to be inactive. The formation of neoantigenic trifluoroacetylated protein adducts by microsomal mixtures incubated with HCFC-123 and NADPH was catalysed primarily by CYP2E1 and to a lesser extent by CYP2C19, whereas, only trace levels of immunoreactive protein were seen with microsomes expressing CYP2B6 or CYP2C8. With perchloroethylene as a substrate, the extent of activation was low in comparison with HCFC-123, as judged by the absence of micronuclei formation in the MCL-5 cell line and the weak immunoreactivity of proteins following Western blotting. CYP1A2, CYP2B6 and CYP2C8 appeared to be responsible for perchloroethylene immunoreactivity and in contrast to the findings with the HCFC's, no activation of perchloroethylene by CYP2E1 could be detected. These results show that even though both saturated and unsaturated halocarbons can result in neoantigen formation, there is a marked difference in the specificity of the CYP enzymes involved in their metabolic activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-4274(00)00281-2DOI Listing

Publication Analysis

Top Keywords

neoantigen formation
8
mcl-5 cells
8
metabolic activation
8
hcfc-123 halothane
8
cell lines
8
lines expressing
8
immunoreactive protein
8
cyp2b6 cyp2c8
8
hcfc-123
6
perchloroethylene
5

Similar Publications

The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response.

View Article and Find Full Text PDF

The global trends and distribution in tumor-infiltrating lymphocytes over the past 49 years: bibliometric and visualized analysis.

Front Immunol

January 2025

Beijing Traditional Chinese Medicine Office for Cancer Prevention and Control, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China.

Background: The body of research on tumor-infiltrating lymphocytes (TILs) is expanding rapidly; yet, a comprehensive analysis of related publications has been notably absent.

Objective: This study utilizes bibliometric methodologies to identify emerging research hotspots and to map the distribution of tumor-infiltrating lymphocyte research.

Methods: Literature from the Web of Science database was analyzed and visualized using VOSviewer, CiteSpace, Scimago Graphica, R-bibliometrix, and R packages.

View Article and Find Full Text PDF

The inherent antigen cross-reactivity of the T cell receptor (TCR) is balanced by high specificity. Surprisingly, TCR specificity often manifests in ways not easily interpreted from static structures. Here we show that TCR discrimination between an HLA-A*03:01 (HLA-A3)-restricted public neoantigen and its wild-type (WT) counterpart emerges from distinct motions within the HLA-A3 peptide binding groove that vary with the identity of the peptide's first primary anchor.

View Article and Find Full Text PDF

Characterization of Tumor Antigens from Multi-omics Data: Computational Approaches and Resources.

Genomics Proteomics Bioinformatics

January 2025

Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.

Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.

View Article and Find Full Text PDF

TLR7/8/9 agonists and low-dose cisplatin synergistically promotes tertiary lymphatic structure formation and antitumor immunity.

NPJ Vaccines

January 2025

Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.

In situ vaccination (ISV) triggers antitumor immune responses using the patient's own cancer antigens, yet limited neoantigen release hampers its efficacy. Our novel combination therapy involves low-dose local cisplatin followed by ISV with a TLR7/8/9 agonist formulation (CR108), in which CR108 boosts and sustains the antitumor responses induced by the cisplatin-released neoantigens. In mouse models, the cisplatin+CR108 combination significantly outperformed cisplatin or CR108 alone in abrogating established 4T1 and B16 tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!