Unlabelled: We sought to determine whether tizanidine, an alpha2-agonist, relieved thermal hyperalgesia in rats with surgically induced neuropathic pain. We used a Sprague-Dawley rat model in which a chronic constriction of the sciatic nerve caused the rats to develop postural changes, mechanical allodynia, and thermal hyperalgesia. Thermal hyperalgesia was verified through paw withdrawal latency (PWL). PWL was tested before surgery, after surgery, and after injections with tizanidine (0.5, 1.0, or 2.0 mg/kg) or normal saline. Ambulatory and total movements were evaluated by placing the rats in activity cages. Thermal hyperalgesia was induced in all rats after surgery. Tizanidine, but not saline, caused a significant improvement in PWL (P < 0.05), with complete reversal of thermal hyperalgesia at all doses on postoperative Day 6. Rats who received tizanidine 2 mg/kg maintained complete reversal of thermal hyperalgesia through postoperative Day 9. Some sedation was observed with tizanidine 2 mg/kg, but not with smaller doses. We conclude that tizanidine effectively reversed thermal hyperalgesia in a rat model.
Implications: This study was conducted to determine whether tizanidine could attenuate the thermal hyperalgesia that occurs in rats with surgically induced chronic constriction of the sciatic nerve. Tizanidine was effective in reducing sensitivity to heat, as measured by paw withdrawal latency, and did not cause sedation at smaller doses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00000539-200111000-00057 | DOI Listing |
The Ca 3.2 isoform of T-type voltage-gated calcium channels plays a crucial role in regulating the excitability of nociceptive neurons; the endogenous molecules that modulate its activity, however, remain poorly understood. Here, we used serum proteomics and patch-clamp physiology to discover a novel peptide albumin (1-26) that facilitates channel gating by chelating trace metals that tonically inhibit Ca 3.
View Article and Find Full Text PDFMol Med
January 2025
Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.
Background: Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China. Electronic address:
Neuropathic pain (NP) is a chronic disease state centred on neuroinflammation with a high prevalence and limited effective treatment options. Peroxisome proliferator-activated receptor α (PPARα) has emerged as a promising target for NP management due to its anti-inflammatory properties. Recent evidence highlights the critical role of the gut microbiome and its metabolites in NP pathogenesis.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, China.
Previous studies have shown that astrocyte activation in the anterior cingulate cortex (ACC), accompanied by upregulation of the astrocyte marker S100 calcium binding protein B (S100B), contributes to comorbid anxiety in chronic inflammatory pain (CIP), but the exact downstream mechanism is still being explored. The receptor for advanced glycation end-products (RAGE) plays an important role in chronic pain and psychosis by recognizing ligands, including S100B. Therefore, we speculate that RAGE may be involved in astrocyte regulation of the comorbidity between CIP and anxiety by recognizing S100B.
View Article and Find Full Text PDFVet Anaesth Analg
January 2025
Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL, USA.
Burn-related neuropathic pain (BRNP) can arise following burn-induced nerve damage, affects approximately 6% of burned human patients and can result in chronic pain. Although widely studied in humans, data on BRNP or its treatment in animals is lacking. A 4-year-old domestic shorthair cat was presented with an infected, non-healing wound suspected to be a caustic burn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!