Synthesis of alpha-fluorocarboxylates from the corresponding acids using acetyl hypofluorite.

J Org Chem

School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

Published: November 2001

alpha-Fluorocarboxylic esters and acids were synthesized in good yields. The corresponding esters and acids were converted to their ketene acetals, and these enol derivatives reacted with AcOF made directly from fluorine. This route circumvents the problems associated with nucleophilic fluorinations such as various eliminations and rearrangements. alpha- and beta-branched carboxylic acid derivatives that cannot be directly fluorinated gave by this electrophilic fluorination the corresponding alpha-fluoro derivatives in good yield. Both the fluorination reaction and the preparation of AcOF are fast and suitable for [18]F incorporation into acids and esters needed for working with PET. alpha-Fluoroibuprofen (20) and methyl 2-fluoro-3,3,3-triphenylpropionate (32) are two examples of this general reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo010677kDOI Listing

Publication Analysis

Top Keywords

esters acids
8
synthesis alpha-fluorocarboxylates
4
alpha-fluorocarboxylates corresponding
4
acids
4
corresponding acids
4
acids acetyl
4
acetyl hypofluorite
4
hypofluorite alpha-fluorocarboxylic
4
alpha-fluorocarboxylic esters
4
acids synthesized
4

Similar Publications

The selective oxidative cleavage and functionalization of C(OH)-C bonds in tertiary alcohols harbor immense feasibility in organic synthesis and enable the production of high value-added chemicals from renewable biomass. However, it remains a challenge, owing to the inherent kinetic inertness and thermodynamic stability of C(OH)-C bonds and the lack of C-H. Taking the huge potential and challenge of C(OH)-C bond activation and functionalization into consideration, herein, we show the first example of an inexpensive bifunctional ferric nitrate catalyst for catalytic direct oxidation of structurally distinct tertiary alcohols to esters with environmentally benign molecular oxygen as an oxidant and MeOH as a solvent, without the assistance of any additives.

View Article and Find Full Text PDF

Phthalate esters decreased nutritional value of rice grains via redirecting glycolytic carbon flow from grain quality formation toward antioxidative defense.

J Hazard Mater

January 2025

College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.

The prevalence and persistence of phthalate esters (PAEs) in agricultural soils has garnered global attention. Assessing their potential impacts on crop yield and quality necessitates a thorough understanding of their risks. In this study, we elucidated the carbon flow-dependent mechanisms of the decreased grain quality upon exposure to PAEs through a soil-based rice cultivation experiment.

View Article and Find Full Text PDF

Based on the observation that urea, water, and ethyl esters (EE) can form gypsum-like mixtures, this study explored the feasibility of employing water as a solvent for urea in the urea complexation method to enrich n-3 polyunsaturated fatty acids with docosahexaenoic acid (DHA)-containing ethyl esters (DHA- EE) from Crypthecodinium cohnii as the material. Under the conditions of a urea/DHA-EE ratio of 3, a water/DHA-EE ratio of 0.75, a mixing temperature of 65℃, and a cooling temperature of 20℃, a concentrate containing over 90% DHA was achieved.

View Article and Find Full Text PDF

Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution.

View Article and Find Full Text PDF

The Electrochemical Iodination of Electron-Deficient Arenes.

Angew Chem Int Ed Engl

January 2025

Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany.

The iodination of electron-deficient arenes and heteroarenes is a long-standing problem in organic synthesis. Herein we describe the electrochemical iodination in nitromethane with BuNI as iodine source and supporting electrolyte under Lewis acid-free conditions in the presence of small amounts of chloride anions. The electrochemically generated reagent could be applied for the iodination of halogenated arenes, aromatic aldehydes, acids, esters, ketones, as well as nitroarenes to afford the products in good to excellent yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!