Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A Modified General Regression Neural Network (MGRNN) is presented as an easy-to-use 'black box'-tool to feed in available data and obtain a reasonable regression surface. The MGRNN is based on the General Regression Neural Network by D. Specht [Specht, D. (1991). A General Regression Neural Network. IEEE Transactions on Neural Networks, 2(6), 568-576], therefore, the network's architecture and weights are determined. The kernel width of each training sample is trained by two supervised training algorithms. These fast and reliable algorithms require four user-definable parameters, but are robust against changes of the parameters. Its generalization ability was tested with different benchmarks: intertwined spirals, Mackey-Glass time series and PROBEN1. The MGRNN provides two additional features: (1) it is trainable with arbitrary data as long as a suitable metric exists. Particularly, it is unnecessary to force the data structure to vectors of equal length; (2) it is able to compute the gradient of the regression surface as long as the gradient of the metric is definable and defined. The MGRNN solves common practical problems of common feed-forward networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0893-6080(01)00051-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!