Growth and the production of acetone, butanol, and ethanol by Clostridium beijerinckii NCIMB 8052 on several polysaccharides and sugars were analyzed. On crystalline cellulose, growth and solvent production were observed only when a mixture of fungal cellulases was added to the medium. On lichenan growth and solvent production occurred, but this polymer was only partially utilized. To increase utilization of these polymers and subsequent solvent production, the genes for two new glycoside hydrolases, celA and celD from the fungus Neocallimastix patriciarum, were cloned separately into C. beijerinckii. To do this, a secretion vector based on the pMTL500E shuttle vector and containing the promoter and signal sequence coding region of the Clostridium saccharobutylicum NCP262 eglA gene was constructed and fused either to the celA gene or the celD gene. Stable C. beijerinckii transformants were obtained with the resulting plasmids, pWUR3 (celA) and pWUR4 (celD). The recombinant strains showed clear halos on agar plates containing carboxymethyl cellulose upon staining with Congo red. In addition, their culture supernatants had significant endoglucanase activities (123 U/mg of protein for transformants harboring celA and 78 U/mg of protein for transformants harboring celD). Although C. beijerinckii harboring either celA or celD was not able to grow, separately or in mixed culture, on carboxymethyl cellulose or microcrystalline cellulose, both transformants showed a significant increase in solvent production during growth on lichenan and more extensive degradation of this polymer than that exhibited by the wild-type strain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93281PMC
http://dx.doi.org/10.1128/AEM.67.11.5127-5133.2001DOI Listing

Publication Analysis

Top Keywords

solvent production
20
clostridium beijerinckii
8
neocallimastix patriciarum
8
glycoside hydrolases
8
production growth
8
growth solvent
8
cela celd
8
carboxymethyl cellulose
8
u/mg protein
8
protein transformants
8

Similar Publications

Oxidative byproducts of cannabidiol (CBD) are known to be cytotoxic. However, CBD susceptibility to oxidation and resulting toxicity dissolved in two common solvents, ethanol (EtOH) and dimethyl sulfoxide (DMSO), is seldom discussed. Furthermore, CBD products contain a wide range of concentrations, making it challenging to link general health risks associated with CBD cytotoxicity.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.

View Article and Find Full Text PDF

The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.

View Article and Find Full Text PDF

Expanding the chemical coverage of polar compounds in water analysis by coupling supercritical fluid with hydrophilic interaction chromatography high-resolution mass spectrometry.

Anal Chim Acta

March 2025

Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands. Electronic address:

Background: Persistent and mobile organic compounds (PMOC) are of great concern for water quality and human health. The recent improvement and availability of high-resolution mass spectrometry in combination with liquid chromatography have widely expanded the potential of analytical workflows for their detection and quantitation in water. Given their high polarity, the detection of some PMOC requires alternative techniques to reversed-phase chromatography, such as hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!