Solanapyrone A, a phytotoxin and enzyme inhibitor isolated from a fungus (SUT 01B1-2) selectively inhibits the activities of mammalian DNA polymerase beta and lambda (pol beta and lambda) in vitro. The IC50 values of the compound were 30 microm for pol beta and 37 microm for pol lambda. Because pol beta and lambda are in a family and their three-dimensional structures are thought to be highly similar to each other, we used pol beta to analyze the biochemical relationship with solanapyrone A. On pol beta, solanapyrone A antagonistically competed with both the DNA template and the nucleotide substrate. BIAcore analysis demonstrated that solanapyrone A bound selectively to the N-terminal 8-kDa domain of pol beta. This domain is known to bind single-stranded DNA, provide 5'-phosphate recognition of gapped DNA, and cleave the sugar-phosphate bond 3' to an intact apurinic/apyrimidinic (AP) site (i.e. AP lyase activity) including 5'-deoxyribose phosphate lyase activity. Solanapyrone A inhibited the single-stranded DNA-binding activity but did not influence the activities of the 5'-phosphate recognition in gapped DNA structures and the AP lyase. Based on these results, the inhibitory mechanism of solanapyrone A is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M105144200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!