Epidermal growth factor and 1alpha,25-dihydroxyvitamin D3 suppress lipogenesis in hamster sebaceous gland cells in vitro.

J Invest Dermatol

Department of Biochemistry, Tokyo University of Pharmacy and Life Science, School of Pharmacy, Hachioji, Tokyo, Japan.

Published: October 2001

We have previously reported the establishment of a culture system of hamster auricular sebocytes. Although their morphologic and biochemical properties are very similar to those of human sebocytes, the regulation of lipogenesis is not clear. Therefore, we investigated the effect of epidermal growth factor, all-trans retinoic acid, 1alpha,25-dihydroxyvitamin D3, and androgens such as testosterone and 5alpha-dihydrotestosterone on lipogenesis in cultured hamster sebocytes. Intracellular lipid droplets detected with Oil-Red-O staining were observed in 5 d cultures and increased in a time-dependent manner; 40.7% +/- 1.11% of 2 wk cultured cells tested lipid-positive by flow cytometric analysis. When the hamster sebocytes were cultured in the presence of epidermal growth factor, all-trans retinoic acid, or 1alpha,25-dihydroxyvitamin D3, the intracellular lipid droplets were diminished by all-trans retinoic acid and epidermal growth factor, and slightly by 1alpha,25-dihydroxyvitamin D3. The intracellular lipid droplets consisted mainly of triglycerides (71.8%) and, as minor components, cholesterol (18.0%), wax esters (3.6%), and free fatty acids (6.6%). Epidermal growth factor and all-trans retinoic acid decreased the intracellular accumulation of triglycerides (92.6% and 96.1% inhibition, respectively) and free fatty acids (54.3% and 62.6% inhibition, respectively) in the sebocytes. In addition, 1alpha,25-dihydroxyvitamin D3 decreased the triglyceride level (34.3% inhibition), but augmented the accumulation of wax esters (30% increase). There was no difference in the level of cholesterol as a result of these treatments, however. In contrast, 5alpha-dihydrotestosterone augmented the formation of intracellular lipid droplets along with an increase in the accumulation of triglycerides in hamster sebocytes. Our findings that regulation of lipogenesis by all-trans retinoic acid and androgen in hamster sebocytes is identical to regulation in humans suggest that hamster sebocytes are useful for the elucidation of sebaceous function at the cellular level. Furthermore, this is the first evidence that epidermal growth factor and 1alpha,25-dihydroxyvitamin D3 may act as suppressors in the regulation of lipogenesis in hamster sebocytes in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.0022-202x.2001.01516.xDOI Listing

Publication Analysis

Top Keywords

epidermal growth
24
growth factor
24
hamster sebocytes
24
all-trans retinoic
20
retinoic acid
20
intracellular lipid
16
lipid droplets
16
factor 1alpha25-dihydroxyvitamin
12
regulation lipogenesis
12
factor all-trans
12

Similar Publications

The cysteine-rich epidermal growth factor ligand domain 2 protein (CRELD2) is associated with pathways that regulate epithelial-to-mesenchymal transition, a critical process driving cancer metastasis. This study aimed to determine the prognostic value of CRELD2 status on survival outcomes in triple-negative breast cancer (TNBC). Seventy patients were included in the study.

View Article and Find Full Text PDF

In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

Small molecules targeting activating mutations within the epidermal growth factor receptor (EGFR) are efficacious anticancer agents, particularly in non-small cell lung cancer (NSCLC). Among these, lazertinib, a third-generation tyrosine kinase inhibitor (TKI), has recently gained FDA approval for use in combination with amivantamab, a dual EGFR/MET-targeting monoclonal antibody. This review delves into the discovery and development of lazertinib underscoring the improvements in medicinal chemistry properties, especially in comparison with osimertinib.

View Article and Find Full Text PDF

Background: Hypertension-mediated organ damage (HMOD) is a critical complication of hypertension that can present with cardiac, retinal, and renal manifestations and affect patient outcomes. Serum signal peptide, CUB (complement C1r/C1s, Uegf, and Bmp1) domain, and epidermal growth factor-like domain-containing protein 1 (SCUBE-1), a novel biomarker implicated in vascular pathology, shows promise for detecting HMOD. This study aims to explore the relation between SCUBE-1 levels and HMOD in hypertensive patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!