hsp105alpha is a stress protein characteristically highly expressed in the brain compared with other tissues in mammals. Here, to examine whether hsp105alpha plays a pivotal role in the nervous system, we tested the capability of hsp105alpha to protect against apoptosis in rat neuronal PC12 cells. Various stress treatments such as serum deprivation, heat shock, hydrogen peroxide, etoposide, and actinomycin D induced apoptosis in PC12 cells with characteristic shrinking of nuclei and chromatin. However, PC12 cells that constitutively overexpressed mouse hsp105alpha exhibited a strong protective effect against apoptosis induced by these stress treatments. Cleavage of poly(ADP-ribose) polymerase induced in PC12 cells by these treatments was inhibited in the constitutively overexpressed hsp105alpha cells. Furthermore, c-Jun N-terminal kinase (JNK) was activated in the cells treated with heat shock but not other treatments, and the heat-induced JNK activation was inhibited by the constitutive expression of hsp105alpha.Thus, hsp105alpha prevents not only heat-induced apoptosis by inhibiting JNK activation, but also prevents the apoptosis induced by other stressors through different pathways, and may play important roles in neuronal protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.2001.5802 | DOI Listing |
Antioxidants (Basel)
January 2025
Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy.
The rising global focus on healthy lifestyles and environmental sustainability has prompted interest in repurposing plant-based by-products for health benefits. With increasing life expectancy, the incidence of neurodegenerative diseases-characterized by complex, multifactorial mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress, and inflammation-continues to grow. Medicinal plants, with their diverse bioactive compounds, offer promising therapeutic avenues for such conditions.
View Article and Find Full Text PDFHistol Histopathol
January 2025
Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Jiangsu, PR China.
Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.
View Article and Find Full Text PDFMol Neurobiol
January 2025
School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Pharmacy, Shenzhen Technology University, Shenzhen, Guangdong, China. Electronic address:
Ethnopharmacological Relevance: Shilong Qingxue Granule (SQG), a traditional Chinese medicine, effectively treats the secondary neurological damage and functional deficits caused by cerebral hemorrhage, though its exact mechanism remains unclear.
Aim Of The Study: This study aimed to investigate the effects of SQG and its mechanisms.
Materials And Methods: we evaluated the effects of SQG and its extracts on glutamate induced nerve damage using in vivo and in vitro models.
Food Chem Toxicol
January 2025
Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China. Electronic address:
Neurological dysfunction induced by fluoride is still one of major concern worldwide, yet the underlying mechanisms remain elusive. To explore whether fluoride disrupts lysosomal biosynthesis via the GSK3β signaling, leading to neurological damage, both in vivo rat models and in vitro PC12 cell models were conducted. Subsequent findings revealed reduced spatial learning and memory abilities, decreased hippocampal neurons, and disrupted neuronal arrangement in NaF-treated rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!