Biologic response modifiers are becoming an important addition to surgery, chemotherapy, and radiotherapy in the management of cancer. As this field of research grows and expands, more biologic response modifiers will be incorporated into therapeutic regimens. By stimulating the immune system to eradicate minimal residual disease, these agents may improve the disease-free and long-term survival rates of patients with a variety of malignancies. The challenge is to incorporate biologic response modifiers into the treatment armamentarium in ways that will maximize their tumorigenicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0889-8588(05)70244-6 | DOI Listing |
Nicotine Tob Res
January 2025
Department of Population Health Sciences, University of Leicester, Leicester, UK.
Introduction: Varenicline is an α4β2 nicotinic acetylcholine receptor partial agonist with the highest therapeutic efficacy of any pharmacological smoking cessation aid and a 12-month cessation rate of 26%. Genetic variation may be associated with varenicline response, but to date no genome-wide association studies of varenicline response have been published.
Methods: In this study, we investigated the genetic contribution to varenicline effectiveness using two electronic health record-derived phenotypes.
J Cancer Res Ther
December 2024
Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, P.R. China.
Background: Cryoablation induces antitumor immune responses. Spatial transcriptomic landscape technology has been used to determine the micron-level panoramic transcriptomics of tissue slices in situ.
Methods: The effects of cryoablation on the immune microenvironment in non-small cell lung cancer (NSCLC) were explored by comparing the Whole Transcriptome Atlas (WTA) panel of immune cells before and after cryoablation using the spatial transcriptomic landscape.
J Cancer Res Ther
December 2024
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China.
Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.
Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
Safer chemical alternatives to bisphenol (BP) have been a major pursuit of modern green chemistry and toxicology. Using a chemical similarity-based approach, it is difficult to identify minor structural differences that contribute to the significant changes of toxicity. Here, we used omics and computational toxicology to identify chemical features associated with BP analogue-induced embryonic toxicity, offering valuable insights to inform the design of safer chemical alternatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!