Cyclic enones 2-cyclohexen-1-one (1a), 4,4-dimethyl-2-cyclohexen-1-one (1b), 2-cyclopenten-1-one (1c), and 2-cyclohepten-1-one (1d) react with octa-1,7-diyne (2) in THF in the presence of Ni(PPh(3))(2)I(2), ZnI(2), and Zn powder at 62 degrees C to give [2 + 2 + 2] cycloaddition-dehydrogenation products 3a-d in 32-80% yields. alpha,beta-Unsaturated lactone 5a (5,6-dihydro-2H-pyran-2-one) undergoes [2 + 2 + 2] cycloaddition with 2 to give both the corresponding cyclohexadiene product 6 (29%) and dehydrogenation product 7 (39%). Under similar reaction conditions, 3-buten-2-one reacts with 2 and various substituted hepta-1,6-diynes 9a-c to give [2 + 2 + 2] cycloaddition-dehydrogenation products 11a-d in 68-80% yields. Diphenylacetylene also reacts with 1a-d, 5a, and 2(5H)-furanone (5b) to afford the corresponding [2 + 2 + 2] cocyclotrimerization products 13a-d and 14a-b. No dehydrogenation of products 13 and 14 was observed under the reaction and workup conditions. The reactions of acrylates with alkynes catalyzed by nickel complexes give products that depend greatly on the reaction conditions. Treating ethyl acrylate (15a) with 1-phenyl-1-propyne (16) in the presence of Ni(PPh(3))(2)Cl(2) and Zn at 90 degrees C in toluene affords cocyclotrimerization product 19aas the major product (54% yield). However, treatment of CH(2)CHCOOR (R = Et and t-Bu) with mono alkynes 16 and 12 in the presence of Ni(PPh(3))(2)X(2) (X = Cl and I) and Zn powder in toluene at 60 degrees C affords the corresponding conjugated trienes 17a-c in 82-92% yields. The MS data of 17firmly support an adduct of two molecules of alkyne and a molecule of acrylate. Similarly, the reaction of 15a with octa-1,7-diyne in the presence of Ni(PPh(3))(2)I(2), ZnI(2), and zinc gives triene derivative 21 in 68% yield. NOE and X-ray results indicate that in these trienes the substituents from each alkyne and alkene moiety are cis to each other. The unique stereoselectivity can be attributed to the exclusive formation of seven-membered nickelacycloheptadiene intermediate 25during the catalytic reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo9900580DOI Listing

Publication Analysis

Top Keywords

alkynes catalyzed
8
catalyzed nickel
8
nickel complexes
8
presence nipph32i2
8
nipph32i2 zni2
8
cycloaddition-dehydrogenation products
8
reaction conditions
8
products
5
reaction
5
highly regio-
4

Similar Publications

Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Molybdenum-Catalyzed ()-Selective Anti-Markovnikov Hydrosilylation of Alkynes.

Molecules

December 2024

School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China.

Herein, we report the first example of molybdenum-catalyzed ()-Selective anti-Markovnikov hydrosilylation of alkynes. The reaction operates effectively with the utilization of minute amounts of the inexpensive, bench-stable pre-catalyst and ligand under mild conditions. Moreover, this molybdenum-catalyzed hydrosilylation process features the advantages of simple operation, excellent selectivity, and broad functional groups tolerance.

View Article and Find Full Text PDF

A facile copper-catalyzed, base-controlled cyclization reaction has been developed for the synthesis of 9-membered cycloalkyne and 6-membered heterocycle sultams under mild conditions. This protocol utilizes a copper-catalyzed intramolecular A (alkyne-aldehyde-amine) coupling reaction to efficiently synthesize 9-membered cycloalkyne sultams in yields up to 90%. Alternatively, by substituting NaHCO with DBU, the protocol achieves selective deprotection of the -propargyl group, thereby facilitating the formation of 6-membered heterocyclic sultams, also in high yields.

View Article and Find Full Text PDF

Chemodivergent, enantio- and regioselective couplings of alkynes, aldehydes and silanes enabled by nickel/N-heterocyclic carbene catalysis.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.

View Article and Find Full Text PDF

Intermediate Control: Unlocking Hitherto Unknown Reactivity and Selectivity in N-Conjugated Allenes and Alkynes.

Acc Chem Res

January 2025

Department of Chemistry and Chemistry Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.

ConspectusControlling selectivity through manipulation of reaction intermediates remains one of the most enduring challenges in organic chemistry, providing novel solutions for selective C-C π-bond functionalization. This approach, guided by activation principles, provides an effective method for selective functional group installation, enabling direct synthesis of organic molecules that are inaccessible through conventional pathways. In particular, the selective functionalization of N-conjugated allenes and alkynes has emerged as a promising research focus, driven by advances in controlling reactive intermediates and activation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!