Stereoselective Cross-Coupling of Benzylic Bromides and Vinyl Stannanes.

J Org Chem

Universität Potsdam, Institut für Organische Chemie und Strukturanalytik, Am Neuen Palais 10, 14469 Potsdam, Germany.

Published: April 1999

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo981840nDOI Listing

Publication Analysis

Top Keywords

stereoselective cross-coupling
4
cross-coupling benzylic
4
benzylic bromides
4
bromides vinyl
4
vinyl stannanes
4
stereoselective
1
benzylic
1
bromides
1
vinyl
1
stannanes
1

Similar Publications

Although numerous transition-metal catalyzed cross-coupling reactions of alkenyl electrophiles with a sulfur(VI) leaving group, mainly alkenyl sulfones, have been developed, most rely heavily on highly nucleophilic Grignard reagents, and the use of organoboron reagents remains challenging. We report herein facile preparation and the following Pd-catalyzed Suzuki-Miyaura cross-coupling reaction of alkenyl sulfoximine, a monoaza analog of sulfone. The condensation of alkyl sulfoximine with aldehydes, developed in this study, makes alkenyl sulfoximines more readily available.

View Article and Find Full Text PDF

Photoinduced Regiodivergent and Enantioselective Cross-Coupling of Glycine Derivatives with Hydrocarbon Feedstocks.

J Am Chem Soc

January 2025

Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.

Regiodivergent asymmetric synthesis represents a transformative strategy for the efficient generation of structurally diverse chiral products from a single set of starting materials, significantly enriching their enantiomeric composition. However, the design of radical-mediated regiodivergent and enantioselective reactions that can accommodate a wide range of functional groups and substrates has posed significant challenges. The obstacles primarily lie in switching the regioselectivity and achieving high enantiodiscrimination, especially when dealing with high-energy intermediates.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method using TMSOTf to create spiroketal derivatives through hydroalkoxylation and cycloaddition reactions involving hydroxy cyclopropenes and aldehydes.
  • This process generates a donor-acceptor cyclopropane intermediate, allowing for the efficient synthesis of [5.5]- and [6.5]-spiroketals.
  • The resulting spirocyclic compounds can be further modified to produce complex polycyclic heterocycles through metal halogen exchange and copper-catalyzed reactions, with a decarboxylation step that introduces a fourth chiral center.
View Article and Find Full Text PDF

Studies on the Stereoselective Synthesis of Sacubitril via a Chiral Amine Transfer Approach.

Chem Asian J

December 2024

Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.

We present a comprehensive account of our efforts directed towards the synthesis of sacubitril, a neprilysin inhibitor used in combination with valsartan and marketed as Entresto™. Our initial approach to the formal synthesis of sacubitril employed a chiral pool strategy, utilizing (S)-pyroglutamic acid as a key building block and Cu(I)-mediated Csp-Csp cross-coupling as a key transformation. Further investigations led to the development of chiral amine transfer (CAT) reagents-based stereoselective synthesis.

View Article and Find Full Text PDF

Regioselective γ-polyhaloalkylation is achieved using tetrahalomethanes or α,α,α-trihaloalkyl compounds and siloxydienes via Fe(II) catalysis. A range of siloxydienes are functionalized in good yields with high stereoselectivity under mild reaction conditions. Structural divergence is observed as either haloalkylated or haloalkenylated products are formed on the basis of the substitution pattern of the siloxydiene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!