We describe a strategy for the incorporation of a 2'-C-branched ribonucleoside, 2'-C-beta-methylcytidine, into oligonucleotides via solid-phase synthesis using phosphoramidite derivatives. 4-N-Benzoyl-2'-C-beta-methylcytidine (2b) was synthesized by coupling persilylated 4-N-benzoylcytosine with 1,2,3,5-tetra-O-benzoyl-2-C-beta-methyl-alpha-(and beta)-D-ribofuranose (1) in the presence of SnCl(4) in acetonitrile, followed by selective deprotection with NaOH in pyridine/methanol. The 3'- and 5'-hydroxyl groups were blocked as a cyclic di-tert-butylsilanediyl ether 3 by treatment with di-tert-butyldichlorosilane/AgNO(3) in DMF. The 2'-hydroxyl group was then protected as a tert-butyldimethylsilyl ether 4a by treatment with tert-butylmagnesium chloride followed by addition of tert-butyldimethylsilyl trifluoromethanesulfonate in THF. As an alternative to 2'-silyl protection, the corresponding 2'-O-tetrahydropyranyl ether 4b was prepared by treatment of 3 with 4,5-dihydro-2H-pyran in the presence of a catalytic amount of 10-camphorsulfonic acid in methylene chloride. The di-tert-butylsilanediyl groups of 4a and 4b were removed by treatment with pyridinium poly(hydrogen fluoride) to afford 5a and 5b, respectively. Protection of the 5'-hydroxyl group as a dimethoxytrityl ether and phosphitylation of the 3'-hydroxyl group by the standard procedure gave the phosphoramidite derivatives 7a and 7b. Both 7a and 7b could be used to incorporate 2'-C-beta-methylcytidine into oligonucleotides efficiently via standard solid-phase synthesis, but the tetrahydropyranyl group of 7b was more readily removed from oligonucleotides than the tert-butyldimethylsilyl group of 7a. Oligonucleotides containing 2'-C-beta-methylcytidine undergo base-catalyzed degradation analogous to natural RNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo981329u | DOI Listing |
Int J Mol Sci
December 2024
Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia.
Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
The asymmetric Tsuji-Trost reaction has been extensively studied due to its importance in establishing stereogenic centers, often adjacent to an -olefin moiety in organic molecules. The generally preferential formation of chiral -olefin products is believed to result from the thermodynamically more stable -π-allylpalladium intermediate. The rapid associative π-σ-π isomerization makes it challenging to synthesize chiral -olefin products via the transient -π-allylpalladium intermediate.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
We report a copper-catalyzed regio-, diastereo-, and enantioselective allylic alkylation of allyl bromides using 1,1-diborylalkanes as prochiral nucleophiles. This methodology employs copper(I) bromide as a catalyst, an ()-BINOL-derived phosphoramidite as a ligand, and lithium benzoate as a crucial additive. The reaction affords enantioenriched homoallylic boronic esters possessing vicinal stereocenters in good yields and high diastereo- and enantioselectivity.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, 230026, Hefei, P. R. China.
Even though tuning electronic effect of chiral ligands has proven to be a promising method for designing efficient catalysts, the potential to achieve highly selective reactions by this strategy remains largely unexplored. Here, we report a palladium-catalyzed enantioselective ring-closing aminoalkylative amination of aminoenynes enabled by rationally tuning the remote electronic property of 1,1'-binaphthol-derived phosphoramidites. With a tailored 6,6'-CN-substituted 1,1'-binaphthol-derived phosphoramidite as a ligand, a broad range of aromatic amines are compatible with this reaction, allowing the efficient synthesis of a series of enantioenriched exocyclic allenylamines bearing saturated N-heterocycles with up to >99% enantiomeric excess.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany.
A VAPOL-derived phosphoramidite ligand is uniquely effective at reverting the regiochemical course of nickel-catalyzed reactions of aldehydes with carbamate-protected 5-amino-2,4-pentadienoates as "push/pull" dienes; the ensuing carbonyl α-amino-homoallylation reaction affords -configured -aminoalcohol derivatives in good yields with high optical purity. The reductive coupling is conveniently performed with a bench-stable Ni(0) precatalyst and EtB as the promoter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!