Aquaporin facilitates the osmotic water transport across biomembranes and is involved in the transcellular and intracellular water flow in plants. We immunochemically quantified the aquaporin level in leaf plasma membranes (PM) and tonoplast of Graptopetalum paraguayense, a Crassulacean acid metabolism (CAM) plant. The aquaporin content in the Graptopetalum tonoplast was approximately 1% of that of radish. The content was calculated to be about 3 microg mg(-1) of tonoplast protein. The level of PM aquaporin in Graptopetalum was determined to be less than 20% of that of radish, in which an aquaporin was a major protein of the PM. The PM aquaporin was detected in the mesophyll tissue of Graptopetalum leaf by tissue print immunoblotting. The osmotic water permeability of PM and tonoplast vesicles prepared from both plants was determined with a stopped-flow spectrophotometer. The water permeability of PM was lower than that of the tonoplast in both plants. The Graptopetalum PM vesicles hardly showed water permeability, although the tonoplast showed a relatively high permeability. The water permeability changed depending on the assay temperature and was also partially inhibited by a sulfhydryl reagent. Furthermore, measurement of the rate of swelling and shrinking in different mannitol concentrations revealed that the protoplasts of Graptopetalum showed low water permeability. These results suggest that the low content of aquaporins in PM and tonoplast is one of the causes of the low water permeability of GRAPTOPETALUM: The relationship between the water-storage function of succulent leaves of CAM plants and the low aquaporin level is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pce141 | DOI Listing |
J Fungi (Basel)
January 2025
Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
Fungal infections have become a growing concern in healthcare, particularly in immunocompromised individuals, with species like , , and posing significant challenges due to rising resistance and limited treatment options. In response, novel antifungal agents are being explored, including thiazolyl hydrazones. This study focuses on the development of a novel thiazolylhydrazone derivative, RW3.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Group of Analysis & Processes, Faculty of Sciences, University of Angers, 2 Bd. A. de Lavoisier, 49045 Angers, Cedex 01, France.
The objective of this study is to evaluate the degradation of end-of-life BWRO membranes sourced from a factory in France by analyzing their water permeability, roughness, and chemical composition in order to diagnose the level of degradation incurred during their first life cycle in water softening. Following this, two new applications for the end-of-life BWRO membranes were investigated: (i) as ultrafiltration membranes (UF) for domestic effluent treatment and (ii) as cation exchange membranes (CEM) for use in fungal microbial fuel cells (FMFC). The UF membrane was renovated with an acetic acid treatment and, subsequently, used for domestic effluent filtration.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Faculty of Chemistry, University of Lodz, 91-403 Lodz, Poland.
Thirty-seven steroid drugs of different types were investigated in silico for their environmental and pharmacokinetic properties (partition between soil and water, bioaccumulation in aquatic organisms, ability to be absorbed from the gastrointestinal tract and to cross biological barriers-skin, blood-brain barrier and placenta) using on-line tools and novel QSAR models. The same drugs were studied by Molecular Docking in the context of their ability to interact with two enzymes-glutathione S-transferase (GST) and human N-acetyltransferase 2 (NAT2), which are involved in the placenta's protective system against harmful xenobiotics. Steroid drugs are released to the environment from households, hospitals, manufacturing plants and farms (e.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
is a rich source of bioactive molecules and thrives in Mediterranean and desert climate regions worldwide. In this study, methanolic HPLC fractions were evaluated for bioactive compounds and PBP2a transpeptidase inhibitors against methicillin-resistant (MRSE). Among the collected HPLC fractions, F02 of the methanol extract demonstrated potential activity against MRSE01 (15 ± 0.
View Article and Find Full Text PDFGels
January 2025
Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 3000 Arlington Ave, Toledo, OH 43614, USA.
Microemulsions have been commonly used with various permeation enhancers to improve permeability through the skin. The purpose of this study was to compare the release and permeation ability of two commonly used permeation enhancers-diethylene glycol monoethyl ether (DGME) and oleyl alcohol-by the changes in oil composition, the addition of a gelling agent, and water content using ibuprofen as a model drug. Four microemulsions were formulated, selection was based on ternary phase diagrams, and physicochemical properties were evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!