The pestivirus envelope glycoprotein E(rns) has RNase activity and therefore was suspected to enter cells to cleave RNA. The protein contains an RNase domain with a C-terminal extension, which shows homology with a membrane-active peptide. The modular architecture and the C-terminal homology suggested that the C terminus could be responsible for the presumed translocation. Peptides corresponding to the C-terminal domain of E(rns) and also the homologous L3 loop of ribotoxin II were indeed able to translocate across the eukaryotic cell membrane and were targeted to the nucleoli. The entire E(rns) protein was also able to translocate into the cell. Furthermore, other labeled proteins and even active enzymes could be transported inside the cell when they were attached to the C-terminal E(rns) peptide. Translocation was energy-independent and not mediated by a protein receptor. The peptides showed no specificity for cell type or species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M104147200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!