Detailed analysis of proton spin-spin and spin-lattice relaxation behaviors of the bone marrow in the presence of trabecular bone network was performed at low-resolution (B(0) = 0.496T) on rat vertebrae specimens deprived of spinal cord. Two groups of samples, from young and old healthy animals, were investigated before cellular necrosis had started. BMD measurements were carried out to quantify the expected age-related modifications of the trabecular bone network. 1H-MR measurements were also performed on the same samples, deprived of marrow and saturated with water, in order to control the validity of a possible interpretation of the marrow 1H-MR characteristics, in terms of marrow components, and to investigate the possible employment of these samples to study the trabecular bone network properties. We pointed out that: 1) a bimodal distribution of T(2i) and T(1i) values (distinguishing "fast" and "slow" relaxations) describes satisfactorily all the 1H-MR experimental decays; 2) age-related modifications of the trabecular bone network are marked by correlate variations of the BMD value and of the proton spin-spin relaxation rates in water saturated samples; 3) age-related modifications of marrow are underlined by variations of the average value of the "fast" T(2i) and of the "slow" T(1i) relaxation time distributions, which could be attributed to the marrow components different from the fat granules of the adipose cells. Our results suggest that studies in vitro on bone tissue, by 1H-MR techniques at low-resolution, may contribute to a better bone function characterization and, therefore, to a better clinical utilization of MRI techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0730-725x(01)00371-x | DOI Listing |
Clin Oral Investig
January 2025
Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, 350002, China.
Objective: Both the Masquelet technique (MT) and concentrated growth factors (CGF) reduce early graft loss and improve bone regeneration. This study aims to explore the efficacy of combining MT with CGF for mandibular defect repair by characterizing the induced membrane and assessing in vivo osteogenesis.
Materials And Methods: Three experimental groups were compared: negative control (NC), MT, and Masquelet combined with CGF (MTC).
Mol Cell Endocrinol
January 2025
Department of Bone injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China. Electronic address:
Chemerin, an adipocyte-secreted adipokine, can regulate bone resorption and bone formation and is a promising therapy for postmenopausal osteoporosis. However, the effect of endogenous chemerin on intraosseous vascular remodeling in postmenopausal osteoporosis remains unclear. In this study, we investigated the effect of chemerin on osteogenesis formation and intraosseous vascular remodeling in ovariectomized Rarres2 knockout (Rarres2) mice.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Bioengineering, Temple University, 1947 N. 12th St, Philadelphia, PA, 19122, USA.
Bone mechanical function is determined by multiple factors, some of which are still being elucidated. Here, we present a multivariate analysis of the role of bone tissue composition in the proximal femur stiffness of cadaver bones (n = 12, age 44-93). Stiffness was assessed by testing under loading conditions simulating a sideways fall onto the hip.
View Article and Find Full Text PDFOsteoporos Int
January 2025
Department of Endocrinology and Metabolism, All India Institute of Medical Sciences Nagpur, Room No 443, OPD Block, 4th Floor, Plot-2, Sector-20, Mihan, Nagpur, 441108, Maharashtra, India.
J Bone Miner Res
January 2025
Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
Rebound bone loss following denosumab discontinuation is an important barrier in the effective long-term treatment of skeletal disorders. This is driven by increased osteoclastic bone resorption following the offset of RANKL inhibition, and sequential osteoclast-directed therapy has been utilised to mitigate this. However, current sequential treatment strategies intervene following the offset of RANKL inhibition and this approach fails to consistently prevent bone loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!