AI Article Synopsis

Article Abstract

The role of group II metabotropic glutamate receptors in the induction/expression of long-term potentiation has been investigated in the medial perforant path of the outer (infrapyramidal) blade of the rat dentate gyrus in vitro. Activation of group II metabotropic glutamate receptors by perfusion of the selective agonist LY354740 did not induce long-term potentiation or long-term depression in control. However, LY354740, applied following the induction of long-term potentiation by high frequency stimulation, resulted in additional long-term potentiation. LY354740 was only found to cause additional long-term potentiation if the pre-existing high frequency stimulation-induced long-term potentiation was sub-maximal. Although activation of metabotropic glutamate receptors was not required for induction of high frequency stimulation-induced long-term potentiation, activation of both group I and group II metabotropic glutamate receptors was required during high frequency stimulation-induced long-term potentiation in order for subsequent application of LY354740 to result in additional long-term potentiation. Thus, the long-term potentiation caused by application of LY354740 following high frequency-induced long-term potentiation was prevented if the high frequency stimulation was given in the presence of (S)-alpha-methyl-4-carboxyphenylglycine or the selective group I or group II metabotropic glutamate receptor antagonists 1-aminoindan-1,5-dicarboxylic acid or (2S)-alpha-ethylglutamic acid respectively. The long-term potentiation caused by LY354740 was also dependent upon activation of N-methyl-D-aspartate receptors during the high frequency stimulation, being blocked if high frequency stimulation was given in the presence of the N-methyl-D-aspartate receptor antagonist, D(-)-2-amino-5-phosphonopentanoic acid. The long-term potentiation resulting from activation of group II metabotropic glutamate receptors could be due either to the enhancement of the expression level of the high frequency stimulation-induced long-term potentiation, or alternatively, to a direct novel induction of long-term potentiation. In either theory, the long-term potentiation resulting from activation of group II metabotropic glutamate receptors is dependent upon prestimulation of group I and group II metabotropic glutamate receptors and N-methyl-D-aspartate receptors during the 'preconditioning high frequency stimulation'.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(01)00191-9DOI Listing

Publication Analysis

Top Keywords

long-term potentiation
68
metabotropic glutamate
36
high frequency
36
group metabotropic
32
glutamate receptors
32
activation group
20
long-term
18
potentiation
17
frequency stimulation
16
frequency stimulation-induced
16

Similar Publications

Multifunctional Artificial Electric Synapse of MoSe-Based Memristor toward Neuromorphic Application.

J Phys Chem Lett

January 2025

Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.

View Article and Find Full Text PDF

Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.

View Article and Find Full Text PDF

Down syndrome (DS) is a genetic intellectual disorder caused by trisomy of chromosome 21 (Hsa21) and presents with a variety of phenotypes. The correlation between the chromosomal abnormality and the resulting symptoms is unclear, partly due to the spectrum of impairments observed. However, it has been determined that trisomy 21 contributes to neurodegeneration and impaired neurodevelopment resulting from decreased neurotransmission, neurogenesis, and synaptic plasticity.

View Article and Find Full Text PDF

Amblyopia, a highly prevalent loss of visual acuity, is classically thought to result from cortical plasticity. The dorsal lateral geniculate nucleus (dLGN) has long been held to act as a passive relay for visual information, but recent findings suggest a largely underestimated functional plasticity in the dLGN. However, the cellular mechanisms supporting this plasticity have not yet been explored.

View Article and Find Full Text PDF

AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases.

Cell Mol Neurobiol

January 2025

Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.

Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!