Simple procedures that combine calculated ab initio theoretical energies with empirical structural parameters to correlate experimental enthalpies of formation for polycyclic aromatic hydrocarbons are evaluated for predictive potential. The analyzed data set consists of every benzenoid PAH with an experimentally determined DeltaH(f) degrees (g), i.e., nine catacondensed and three pericondensed aromatic compounds. The tested levels of theory use optimized STO-3G, 3-21G, and 6-31G calculated HF electronic energies, and energies determined at the correlated, optimized DFT B3LYP/6-31G and single point MP2/6-31G//HF/6-31G levels. The highest precision correlations of the DeltaH(f) degrees (g) data combine computed electronic energies with three types of parametrized carbon structure descriptors and a CH parameter. The predictive accuracy of this protocol is assessed using a statistical cross-validation procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo981280sDOI Listing

Publication Analysis

Top Keywords

enthalpies formation
8
polycyclic aromatic
8
aromatic hydrocarbons
8
deltahf degrees
8
electronic energies
8
molecular structure
4
structure parameters
4
parameters predictions
4
predictions enthalpies
4
formation catacondensed
4

Similar Publications

The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca, Mg, and Zn) on the stability of dalbavancin in acetate buffer was investigated. Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions after four weeks of storage at 5 °C and 55 °C was measured by RP-HPLC and HP-SEC; a longer-term study was carried out over six months at 5 °C, 25 °C, and 40 °C. Binding of 2HPβCD was characterized by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Bimetallic NiCr nanoparticles decorated on carbon nanofibers (NiCr@CNFs) were synthesized through electrospinning and investigated as catalysts for hydrogen generation from the dehydrogenation of sodium borohydride (SBH). Four distinct compositions were prepared, with chromium content in the catalysts ranging from 5 to 25 weight percentage (wt%). Comprehensive characterization confirmed the successful formation of bimetallic NiCr@CNFs.

View Article and Find Full Text PDF

This study introduces an innovative approach to alloy design by experimentally validating the semi-empirical concept of Griessen and Driessen, which predicts the hydrogen affinity of solid solutions. The work focuses on designing and synthesizing four equiatomic high-entropy alloys (HEAs) with compositions tailored to exhibit highly endothermic enthalpies of solution and formation, resulting in resistance to hydrogen absorption. Unlike conventional studies that prioritize hydrogen storage capacity, this research uniquely targets alloys optimized for minimal hydrogen interaction, addressing critical needs in hydrogen storage and transportation technologies prone to hydrogen embrittlement.

View Article and Find Full Text PDF

Unveiling the Dissociation Mechanism of Diglycine Perchlorate.

Inorg Chem

January 2025

High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Trombay 400085, India.

Determining the dissociation mechanism of perchlorate materials remains a top priority to address sustainability, handling, processing, and synthesis issues of new and existing high-energy density materials vital to many industrial processes. We determined the dissociation mechanism of diglycine perchlorate (DGPCl) using vibrational spectroscopy, which unveiled the formation of ammonium perchlorate (AP) and carbon at high temperatures. Our studies establish that DGPCl shows multiple phase transitions upon heating.

View Article and Find Full Text PDF

Context: Nitrocellulose, widely used in energetic materials, is prone to thermal and chemical degradation, compromising safety and performance. Stabilizers are molecules used in the composition of nitrocellulose-based propellants to inhibit the autocatalytic degradation process that produces nitrous gases and free nitric acids. Curcumin, (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, known for its antioxidant properties and a potential green stabilizer, was investigated using Density Functional Theory (DFT) focusing on its interaction with nitrogen dioxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!