Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo980737v | DOI Listing |
Angew Chem Int Ed Engl
January 2025
IISER Kolkata: Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur, 741246, Nadia, INDIA.
Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
Catalytic regio- and enantioselective hydroamination of less activated internal alkenes presents a challenge to synthetic chemists due to their low reactivity and the difficulty in simultaneously controlling regio- and enantioselectivities. Here, we report an iridium-catalyzed enantioselective hydroamination of internal alkenes directed by an amide. The amide group on the alkene effectively directs the catalyst to overcome the low reactivity and control the regioselectivity and the enantiotopic face selection.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
The synthesis of chiral 1,1-diaryl compounds, particularly those containing a pyridine moiety, is of significant interest due to their pharmaceutical applications. Here, we report the development of a copper-catalyzed enantioselective 1,4-hydropyridylation of conjugated dienes. Utilizing 2-fluoropyridine as the electrophile, CuOAc, and the chiral ligand Tol-BINAP, we optimized reaction conditions to achieve the desired chiral 1,1-diaryl products containing both a pyridine and a cis-crotyl group.
View Article and Find Full Text PDFOrg Lett
December 2024
Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China.
This paper describes an iridium-catalyzed allylation of ring-fused pyrazolones that proceeds with excellent regio-, diastereo- and enantio-selectivities. The approach exploits unactivated, racemic allylic alcohols as a source of allyl building blocks. Asymmetric syntheses of a series of biologically relevant, chiral pyrazolones highlight the utility of the methodology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!