Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo980286e | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China; Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China. Electronic address:
The concentration of S is a vital environmental indicator for evaluating the quality of source water, surface water, and wastewater, and it has a significant impact on biological systems, particularly human health. Therefore, it is crucial to detect S selectively and sensitively. In this study, we developed a simple and rapid one-pot method to prepare a gold nanocluster (BSA-AuNCs) probe for fluorescence-enhanced detection of S toxemia and analyzed the morphological characteristics of BSA-AuNCs and its complex with S using various characterization techniques.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States.
Although alkyl alcohols and aryl chlorides are the two most abundant substrate pools for cross-electrophile coupling, methods to couple them remain limited. Herein we demonstrate a simple procedure for the in situ deoxychlorination of alcohols followed by XEC with aryl chlorides. A broad substrate scope can be achieved by tuning the rate of the reaction via halide exchange.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Furong Labratory, Changsha 410083, China.
A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.
View Article and Find Full Text PDFGels
January 2025
Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX 77204, USA.
Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels with tunable stiffness, adhesion, and magnetic responsiveness, prepared through a simple and efficient "one-pot" method. This approach enables precise control over the hydrogel's mechanical properties, with an elastic modulus ranging from 43 kPa to 277 kPa, tensile strength from 93 kPa to 421 kPa, and toughness from 243 kJ/m to 1400 kJ/m, achieved by modulating the concentrations of acrylamide (AM) and FeO nanoparticles.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
The technology of native chemical ligation and postligation desulfurization has greatly expanded the scope of modern chemical protein synthesis. Here, we report that ultrasonic energy can trigger robust and clean protein desulfurization, and we developed an ultrasound-induced desulfurization (USID) strategy that is simple to use and generally applicable to peptides and proteins. The USID strategy involves a simple ultrasonic cleaning bath and an easy-to-use and easy-to-remove sonosensitizer, titanium dioxide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!