A set of cyclic enol ethers derived from 2,3-dihydrofuran 35 and 3,4-dihydropyran 8 with a varying substitution pattern at the olefinic system were synthesized. Evans's ligand 5 with Cu(I)OTf was found to be an effective catalyst in the cyclopropanation reaction between cyclic enol ethers 14, 19, 28-31, and 33 and ethyl diazoacetate 6 to give diastereoselectivities up to exo/endo = 95:5 and enantioselectivities higher than 95% in nearly all cases. Because of the selective building of a quarternary carbon center and good yields in the formation of bicyclic structures 34c-h, the reaction was used as a key step in the asymmetric synthesis of (+)-quebrachamine 7, an indole alkaloid of the Aspidosperma family. After acid-induced ring opening of bicyclic compound 34f to lactone 40 followed by LiAlH(4) reduction to the masked aldehyde 41, a reaction with tryptamine gave intermediate 42. This alcohol was efficiently converted into the indole alkaloid (+)-quebrachamine 7 in an overall yield of 37% starting from the chiral synthon 34f. Moreover it revealed the absolute configuration of the quarternary center of the cyclopropanation product 34f to be S.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo9807417DOI Listing

Publication Analysis

Top Keywords

cyclic enol
12
enol ethers
12
synthesis +-quebrachamine
8
indole alkaloid
8
highly enantioselective
4
enantioselective intermolecular
4
intermolecular cui-catalyzed
4
cui-catalyzed cyclopropanation
4
cyclopropanation cyclic
4
ethers asymmetric
4

Similar Publications

Farnesyl pyrophosphate derivatives bearing an additional oxygen atom at position 5 proved to be very suitable for expanding the substrate promiscuity of sesquiterpene synthases (STSs) and the formation of new oxygenated terpenoids. Insertion of an oxygen atom in position 9, however, caused larger restraints that led to restricted acceptance by STSs. In order to reduce some of the proposed restrictions, two FPP-ether derivatives with altered substitution pattern around the terminal olefinic double bond were designed.

View Article and Find Full Text PDF

Nickel-Catalyzed Reductive Alkenylation of Enol Derivatives: A Versatile Tool for Alkene Construction.

Acc Chem Res

November 2024

State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.

Article Synopsis
  • - Ketone-to-alkene transformations are important in organic chemistry, and recent nickel-catalyzed reductive alkenylation reactions show promise for creating a variety of alkenes using different functional groups.
  • - The authors' research started with coupling α-chloroboronates, then expanded to include a range of radical-inactive compounds, leading to the development of new strategies for cross-selectivity in various chemical reactions.
  • - These advancements enable efficient synthesis of valuable products, including functionalized cycloalkenes and diverse alkenes, by broadening the types of enol derivatives used in the reactions, making the approach more accessible and practical.
View Article and Find Full Text PDF

Plantaginis Semen is a traditional Chinese medicine(TCM) commonly used in clinical practice in China, which has the effects of clearing heat, inducing diuresis for treating stranguria, draining dampness and relieving diarrhea, brightening eyes, and eliminating phlegm. Plantaginis Semen has a long history of processing. In the Han Dynasty, there were records of stir-frying, and then processing with wine, processing with salt water, processing with rice water, and other processing methods appeared.

View Article and Find Full Text PDF

Amide-derived enols in enol-Ugi reactions: expanding horizons for peptidomimetic scaffold synthesis.

Org Biomol Chem

October 2024

Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.). Departamento de Química Orgánica e Inorgánica. Universidad de Extremadura, 10003 Cáceres, Spain.

A highly efficient enol-Ugi reaction of β,β-diketoamides has been developed using a novel non-heterocyclic amide-stabilised enol. This approach enables a broad reaction scope, affording β-enaminoamide peptidomimetics with constrained conformations due to CH-π interaction and C(sp)H⋯O hydrogen bonding. Notably, the use of a five-membered cyclic enol is crucial for achieving stable products in excellent yields.

View Article and Find Full Text PDF

Benzo[1,3,2]dithiazole-1,1,3-trioxides are bench-stable and easy-to-use reagents. In photoredox catalysis, they generate methyl and perdeuteromethyl radicals which can add to a variety of radical acceptors, including olefins, acrylamides, quinoxalinones, isocyanides, enol silanes, and N-Ts acrylamide. As byproduct, a salt is formed which can be regenerated to the original methylating agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!