An Activated Germanium Metal-Promoted, Highly Diastereoselective Reformatsky Reaction.

J Org Chem

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan.

Published: February 1998

Activated germanium metal, prepared by the reduction of germanium(II) iodide with potassium metal, was found to promote the Reformatsky reaction effectively under mild conditions. In the presence of activated germanium metal, the reactions of alpha-bromo ketones 2a and 2b and alpha-bromo imides 2e and 2f with benzaldehyde (1a) proceeded smoothly to give the corresponding beta-hydroxy carbonyl compounds 3a, 3b, 3e and 3f, respectively, in good yields and with good syn diastereoselectivity. The activated germanium metal-promoted, asymmetric Reformatsky reaction of enantiomerically pure-oxazolidinone derivatives 2g-j with various aldehydes 1a-d was also examined; the highest diastereoselectivity was achieved when (1S,2R)-2-amino-1,2-diphenylethanol-derived 2j was used as the Reformatsky donor. The excellent diastereoselectivity could be explained in terms of the formation of a chairlike, six-membered transition state between the aldehyde and enolate as in the Zimmerman-Traxler model. A single recrystallization of the Reformatsky adducts, followed by hydrolysis and subsequent esterification, led to enantiomerically pure methyl 3-hydroxy-2-methylalkanoates 10j-m, with almost quantitative recovery of the enantiomerically pure 2-oxazolidinone 14.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo971672jDOI Listing

Publication Analysis

Top Keywords

activated germanium
16
reformatsky reaction
12
germanium metal-promoted
8
germanium metal
8
enantiomerically pure
8
reformatsky
5
activated
4
metal-promoted highly
4
highly diastereoselective
4
diastereoselective reformatsky
4

Similar Publications

The discovery of ferroelectricity in two-dimensional (2D) semiconductors has opened a new and exciting chapter in next-generation electronics and spintronics due to their lattice-dimensionality-induced unique behaviors and fascinating functionalities brought by spontaneous polarization. The emerging layered halide perovskites with 2D lattices provide a great platform for generating reduced symmetry and low-dimensional ferroelectricity. Herein, inspired by the approach of reduced lattice dimensionality, a series of 2D layered germanium iodide perovskite ferroelectric semiconductors A2CsGe2I7 [where A = PA (propylammonium), BA (butylammonium) and AA (amylammonium)] was firstly developed, which demonstrates remarkable semiconducting features including narrow direct bandgap (~1.

View Article and Find Full Text PDF

Elemental Germanium Activation and Catalysis Enabled by Mechanical Force.

Angew Chem Int Ed Engl

January 2025

Sichuan University West China Hospital, State key laboratory of biotherapy, Renming South Road 17, 610041, Chengdu, CHINA.

In the realm of materials science and chemical industry, germanium emerges as a strategic resource with distinctive properties that extend its applicability beyond traditional electronics and optics into the promising field of chemical catalysis. Despite its significant role in advanced technological applications, the potential of elemental germanium as a catalyst remains unexplored. Leveraging recent developments in mechanochemistry, this study introduces a groundbreaking approach to activate elemental germanium via mechanical force, facilitating the Reformatsky reaction without the reliance on external reducing agents.

View Article and Find Full Text PDF

Carbon-carbon bond formation and cleavage at redox active bis(pyridylimino)isoindole (BPI) germylene compounds.

Dalton Trans

January 2025

Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Facultad de Química, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, 41092 Sevilla, Spain.

Redox-active ligands provide alternative reaction pathways by facilitating redox events. Among these, tridentate bis(piridylimino)isoindole (BPI) fragments offer great potential, though their redox-active behaviour remains largely underdeveloped. We describe herein a family of BPI germanium(II) complexes and the study of their redox properties.

View Article and Find Full Text PDF

Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).

View Article and Find Full Text PDF

Dihydrogen activation by metallogermylenes was investigated experimentally and theoretically. A neutral NHC-coordinated chlorometallogermylene was synthesized and converted to a cationic base-free metallogermylene of molybdenum via chloride abstraction. The cationic molybdogermylene showed enhanced reactivity toward H compared to the tungsten analog.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!