Activated germanium metal, prepared by the reduction of germanium(II) iodide with potassium metal, was found to promote the Reformatsky reaction effectively under mild conditions. In the presence of activated germanium metal, the reactions of alpha-bromo ketones 2a and 2b and alpha-bromo imides 2e and 2f with benzaldehyde (1a) proceeded smoothly to give the corresponding beta-hydroxy carbonyl compounds 3a, 3b, 3e and 3f, respectively, in good yields and with good syn diastereoselectivity. The activated germanium metal-promoted, asymmetric Reformatsky reaction of enantiomerically pure-oxazolidinone derivatives 2g-j with various aldehydes 1a-d was also examined; the highest diastereoselectivity was achieved when (1S,2R)-2-amino-1,2-diphenylethanol-derived 2j was used as the Reformatsky donor. The excellent diastereoselectivity could be explained in terms of the formation of a chairlike, six-membered transition state between the aldehyde and enolate as in the Zimmerman-Traxler model. A single recrystallization of the Reformatsky adducts, followed by hydrolysis and subsequent esterification, led to enantiomerically pure methyl 3-hydroxy-2-methylalkanoates 10j-m, with almost quantitative recovery of the enantiomerically pure 2-oxazolidinone 14.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo971672j | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structure Chemistry, CHINA.
The discovery of ferroelectricity in two-dimensional (2D) semiconductors has opened a new and exciting chapter in next-generation electronics and spintronics due to their lattice-dimensionality-induced unique behaviors and fascinating functionalities brought by spontaneous polarization. The emerging layered halide perovskites with 2D lattices provide a great platform for generating reduced symmetry and low-dimensional ferroelectricity. Herein, inspired by the approach of reduced lattice dimensionality, a series of 2D layered germanium iodide perovskite ferroelectric semiconductors A2CsGe2I7 [where A = PA (propylammonium), BA (butylammonium) and AA (amylammonium)] was firstly developed, which demonstrates remarkable semiconducting features including narrow direct bandgap (~1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University West China Hospital, State key laboratory of biotherapy, Renming South Road 17, 610041, Chengdu, CHINA.
In the realm of materials science and chemical industry, germanium emerges as a strategic resource with distinctive properties that extend its applicability beyond traditional electronics and optics into the promising field of chemical catalysis. Despite its significant role in advanced technological applications, the potential of elemental germanium as a catalyst remains unexplored. Leveraging recent developments in mechanochemistry, this study introduces a groundbreaking approach to activate elemental germanium via mechanical force, facilitating the Reformatsky reaction without the reliance on external reducing agents.
View Article and Find Full Text PDFDalton Trans
January 2025
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Facultad de Química, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, 41092 Sevilla, Spain.
Redox-active ligands provide alternative reaction pathways by facilitating redox events. Among these, tridentate bis(piridylimino)isoindole (BPI) fragments offer great potential, though their redox-active behaviour remains largely underdeveloped. We describe herein a family of BPI germanium(II) complexes and the study of their redox properties.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578, Japan.
Dihydrogen activation by metallogermylenes was investigated experimentally and theoretically. A neutral NHC-coordinated chlorometallogermylene was synthesized and converted to a cationic base-free metallogermylene of molybdenum via chloride abstraction. The cationic molybdogermylene showed enhanced reactivity toward H compared to the tungsten analog.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!